Advertisements
Advertisements
Question
Find f + g, f − g, cf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{ and } \frac{f}{g}\] in :
(b) If \[f\left( x \right) = \sqrt{x - 1}\] and \[g\left( x \right) = \sqrt{x + 1}\]
Solution
Given: \[f\left( x \right) = \sqrt{x - 1}\] and \[g\left( x \right) = \sqrt{x + 1}\] Thus,
(f + g) ) : [1, ∞) → R is defined by (f + g) (x) = f (x) + g (x) = \[\sqrt{x - 1} + \sqrt{x + 1}\] (f - g) ) : [1, ∞) → R is defined by (f - g) (x) = f (x) - g (x) = \[\sqrt{x - 1} - \sqrt{x + 1}\] cf : [1, ∞) → R is defined by (cf) (x) = \[c\sqrt{x - 1}\] (fg) : [1, ∞) → R is defined by (fg) (x) = f(x).g(x) = (fg) :
[1, ∞) → R is defined by (fg) (x) = f(x).g(x) = \[\sqrt{x - 1} \times \sqrt{x + 1} = \sqrt{x^2 - 1}\]
\[\frac{1}{f}: \left( 1, \infty \right) \to \text{ R isdefined by } \left( \frac{1}{f} \right)\left( x \right) = \frac{1}{f\left( x \right)} = \frac{1}{\sqrt{x - 1}} . \] \[\frac{f}{g}: [1, \infty ) \to \text{ R is defined by } \left( \frac{f}{g} \right)\left( x \right) = \frac{f\left( x \right)}{g\left( x \right)} = \frac{\sqrt{x - 1}}{\sqrt{x + 1}} = \sqrt{\frac{x - 1}{x + 1}} .\]
APPEARS IN
RELATED QUESTIONS
If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G.
State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.
If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}.
If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.
Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that A × (B ∩ C) = (A × B) ∩ (A × C)
Let A = {1, 2} and B = {3, 4}. Write A × B. How many subsets will A × B have? List them.
The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.
If A = {1, 2} and B = {1, 3}, find A × B and B × A.
If A and B are two set having 3 elements in common. If n(A) = 5, n(B) = 4, find n(A × B) and n[(A × B) ∩ (B × A)].
Let A and B be two sets. Show that the sets A × B and B × A have elements in common iff the sets A and B have an elements in common.
Let A = {1, 2, 3, 4} and R = {(a, b) : a ∈ A, b ∈ A, a divides b}. Write R explicitly.
If A = {−1, 1}, find A × A × A.
State whether of the statement is true or false. If the statement is false, re-write the given statement correctly:
If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}
State whether of the statement is true or false. If the statement is false, re-write the given statement correctly:
(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ϕ) = ϕ.
If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:
(i) A × (B ∪ C) = (A × B) ∪ (A × C)
If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:
(iii) A × (B − C) = (A × B) − (A × C)
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(ii) (A × B) ∩ (A × C)
Find the domain of the real valued function of real variable:
(i) \[f\left( x \right) = \frac{1}{x}\]
Find the domain of the real valued function of real variable:
(v) \[f\left( x \right) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}\]
Find the domain of the real valued function of real variable:
(i) \[f\left( x \right) = \sqrt{x - 2}\]
Find the domain of the real valued function of real variable:
(ii) \[f\left( x \right) = \frac{1}{\sqrt{x^2 - 1}}\]
Find the domain of the real valued function of real variable:
(iii) \[f\left( x \right) = \sqrt{9 - x^2}\]
Find the domain and range of the real valued function:
(ii) \[f\left( x \right) = \frac{ax - b}{cx - d}\]
Find the domain and range of the real valued function:
(iv) \[f\left( x \right) = \sqrt{x - 3}\]
Find the domain and range of the real valued function:
(vii) \[f\left( x \right) = - \left| x \right|\]
Find f + g, f − g, cf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{ and } \frac{f}{g}\] in :
(a) If f(x) = x3 + 1 and g(x) = x + 1
Let f(x) = 2x + 5 and g(x) = x2 + x. Describe (i) f + g (ii) f − g (iii) fg (iv) f/g. Find the domain in each case.
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine B × A
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is A × B = B × A?
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is n (A × B) = n (B × A)?
Let A = {–1, 2, 3} and B = {1, 3}. Determine A × B
Let A = {–1, 2, 3} and B = {1, 3}. Determine B × B
Let A = {–1, 2, 3} and B = {1, 3}. Determine A × A
If P = {x : x < 3, x ∈ N}, Q = {x : x ≤ 2, x ∈ W}. Find (P ∪ Q) × (P ∩ Q), where W is the set of whole numbers.
A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∩ C)
State True or False for the following statement.
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, then (A × B) ∪ (A × C) = {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)}.
The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to ______.