English

Let F(X) = 2x + 5 and G(X) = X2 + X. Describe (I) F + G (Ii) F − G (Iii) Fg (Iv) F/G. Find the Domain in Each Case. - Mathematics

Advertisements
Advertisements

Question

Let f(x) = 2x + 5 and g(x) = x2 + x. Describe (i) f + g (ii) f − g (iii) fg (iv) f/g. Find the domain in each case.

 

Solution

Given:
f(x) = 2x + 5 and g(x) = x2 + x
Clearly, f (x) and g (x) assume real values for all x.
Hence,
domain (f) = R and domain (g) = R.

\[\therefore D\left( f \right) \cap D\left( g \right) = R\]

Now,
(i) (g) : R → R is given by (f + g) (x) = (x) + g (x) = 2x + 5 + x2 + x = x2 + 3x + 5.
 Hence, domain ( f + g) = R .

(ii) (f - g) : R → R is given by (f - g) (x) = f (x) - g (x) = (2x + 5) - (x2 + x) = 5 + x -x2
 Hence, domain ( f -g) = R.

(iii) (fg) : R → R is given by (fg) (x) = f(x).g(x) = (2x + 5)(x2 + x)
                                                                   = 2x3 + 2x2 + 5x2 +5x
                                                                     = 2x3 + 7x2 + 5x
Hence, domain ( f.g) = R .

(iv) Given:
 g(x) = x2 + x
g(x) = 0 ⇒ x2 + x = 0 = x(x+ 1) = 0
⇒ x = 0 or (x + 1) = 0
⇒ x = 0 or x = - 1

Now , 

\[\frac{f}{g}: R - \left\{ - 1, 0 \right\} \to R \text{ is given by } \left( \frac{f}{g} \right)\left( x \right) = \frac{f\left( x \right)}{g\left( x \right)} = \frac{2x + 5}{x^2 + x}\]

Hence,

\[\text{ domain } \left( \frac{f}{g} \right) = R - \left\{ - 1, 0 \right\}\]

 

 

 

 
 
 
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.4 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.4 | Q 2 | Page 38

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If A = {–1, 1}, find A × A × A.


If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.


Let A and B be two sets such that n(A) = 3 and n (B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y and z are distinct elements.


The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.


If A = {1, 2} and B = {1, 3}, find A × B and B × A.


Let A and B be two sets. Show that the sets A × B and B × A have elements in common iff the sets A and B have an elements in common. 


Let A = {1, 2, 3, 4} and R = {(ab) : a ∈ Ab ∈ Aa divides b}. Write R explicitly. 


State whether of  the statement is true or false. If the statement is false, re-write the given statement correctly:

(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ϕ) = ϕ.

 

If A = {1, 2}, from the set A × A × A.


Given A = {1, 2, 3}, B = {3, 4}, C ={4, 5, 6}, find (A × B) ∩ (B × C ).

 

If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:

(iii) A × (B − C) = (A × B) − (A × C)


Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that:

(i) A × C ⊂ B × D


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(i) A × (B ∩ C)


Prove that:

(i)  (A ∪ B) × C = (A × C) ∪ (B × C)

(ii) (A ∩ B) × C = (A × C) ∩ (B×C)

 

Find the domain of the real valued function of real variable: 

(ii)  \[f\left( x \right) = \frac{1}{x - 7}\]

 


Find the domain of the real valued function of real variable:

(i) \[f\left( x \right) = \sqrt{x - 2}\]

 


Find the domain and range of the real valued function:

(i) \[f\left( x \right) = \frac{ax + b}{bx - a}\]

 


Find the domain and range of the real valued function:

(ii) \[f\left( x \right) = \frac{ax - b}{cx - d}\]

 

 


Find the domain and range of the real valued function:

(iii)  \[f\left( x \right) = \sqrt{x - 1}\]

 


Find the domain and range of the real valued function:

(iv) \[f\left( x \right) = \sqrt{x - 3}\]

 


Find the domain and range of the real valued function:

(vi) \[f\left( x \right) = \left| x - 1 \right|\] 

 


Find the domain and range of the real valued function:

(vii)  \[f\left( x \right) = - \left| x \right|\]

 


Find the domain and range of the real valued function:

(ix)  \[f\left( x \right) = \frac{1}{\sqrt{16 - x^2}}\]


Find the domain and range of the real valued function:

(x)  \[f\left( x \right) = \sqrt{x^2 - 16}\]


Find f + gf − gcf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{  and } \frac{f}{g}\] in :

(a) If f(x) = x3 + 1 and g(x) = x + 1


If f(x) be defined on [−2, 2] and is given by \[f\left( x \right) = \begin{cases}- 1, & - 2 \leq x \leq 0 \\ x - 1, & 0 < x \leq 2\end{cases}\]  and g(x)

\[= f\left( \left| x \right| \right) + \left| f\left( x \right) \right|\] , find g(x).

 
 
 

Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is A × B = B × A?


Let A = {–1, 2, 3} and B = {1, 3}. Determine A × A


If P = {x : x < 3, x ∈ N}, Q = {x : x ≤ 2, x ∈ W}. Find (P ∪ Q) × (P ∩ Q), where W is the set of whole numbers.


If A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∪ C)


State True or False for the following statement.

If P = {1, 2}, then P × P × P = {(1, 1, 1), (2, 2, 2), (1, 2, 2), (2, 1, 1)}


State True or False for the following statement.

If A × B = {(a, x), (a, y), (b, x), (b, y)}, then A = {a, b}, B = {x, y}


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×