English

Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} And D = {5, 6, 7, 8}. Verify That:(I) A × C ⊂ B × D - Mathematics

Advertisements
Advertisements

Question

Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that:

(i) A × C ⊂ B × D

Solution

Given:
A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}

(i) A × C ⊂ B × D
LHS: A × C = {(1, 5), (1, 6), (2, 5), (2, 6)}
RHS: B × D = {(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)}
∴ A × C ⊂ B × D

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Relations - Exercise 2.2 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 2 Relations
Exercise 2.2 | Q 4.1 | Page 12

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B).


If A = {–1, 1}, find A × A × A.


If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.


Let A and B be two sets such that n(A) = 3 and n (B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y and z are distinct elements.


The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.


If A and B are two set having 3 elements in common. If n(A) = 5, n(B) = 4, find n(A × B) and n[(A × B) ∩ (B × A)].


Let A and B be two sets. Show that the sets A × B and B × A have elements in common iff the sets A and B have an elements in common. 


Given A = {1, 2, 3}, B = {3, 4}, C ={4, 5, 6}, find (A × B) ∩ (B × C ).

 

If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:

(ii) A × (B ∩ C) = (A × B) ∩ (A × C)


If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:

(iii) A × (B − C) = (A × B) − (A × C)


Find the domain of the real valued function of real variable: 

(i)  \[f\left( x \right) = \frac{1}{x}\]

 


Find the domain of the real valued function of real variable: 

(iii) \[f\left( x \right) = \frac{3x - 2}{x + 1}\]

 


Find the domain of the real valued function of real variable:  

(v)  \[f\left( x \right) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}\]

 


Find the domain of the real valued function of real variable:

(ii) \[f\left( x \right) = \frac{1}{\sqrt{x^2 - 1}}\]

 


Find the domain and range of the real valued function:

(i) \[f\left( x \right) = \frac{ax + b}{bx - a}\]

 


Find the domain and range of the real valued function:

(ii) \[f\left( x \right) = \frac{ax - b}{cx - d}\]

 

 


Find the domain and range of the real valued function:

(iii)  \[f\left( x \right) = \sqrt{x - 1}\]

 


Find the domain and range of the real valued function:

(iv) \[f\left( x \right) = \sqrt{x - 3}\]

 


Find the domain and range of the real valued function:

(v) \[f\left( x \right) = \frac{x - 2}{2 - x}\]


Find the domain and range of the real valued function:

(vi) \[f\left( x \right) = \left| x - 1 \right|\] 

 


Find the domain and range of the real valued function:

(vii)  \[f\left( x \right) = - \left| x \right|\]

 


Find the domain and range of the real valued function:

(ix)  \[f\left( x \right) = \frac{1}{\sqrt{16 - x^2}}\]


Find the domain and range of the real valued function:

(x)  \[f\left( x \right) = \sqrt{x^2 - 16}\]


Find f + gf − gcf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{  and } \frac{f}{g}\] in : 

(b) If \[f\left( x \right) = \sqrt{x - 1}\]  and  \[g\left( x \right) = \sqrt{x + 1}\]

 


Let f(x) = 2x + 5 and g(x) = x2 + x. Describe (i) f + g (ii) f − g (iii) fg (iv) f/g. Find the domain in each case.

 

Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine B × A


Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is n (A × B) = n (B × A)?


If A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54}, a ∈ A, b ∈ B, find the set of ordered pairs such that 'a' is factor of 'b' and a < b.


Let A = {–1, 2, 3} and B = {1, 3}. Determine A × A


A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∩ C)


If A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∪ C)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×