Advertisements
Advertisements
Question
If A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54}, a ∈ A, b ∈ B, find the set of ordered pairs such that 'a' is factor of 'b' and a < b.
Solution
Since A = {2, 4, 6, 9}
B = {4, 6, 18, 27, 54}
We have to find a set of ordered pairs (a, b) such that a is factor of b and a < b.
Since 2 is a factor of 4 and 2 < 4.
So (2, 4) is one such ordered pair.
Similarly, (2, 6), (2, 18), (2, 54) are other such ordered pairs.
Thus the required set of ordered pairs is {(2, 4), (2, 6), (2, 18), (2, 54), (6, 18), (6, 54,), (9, 18), (9, 27), (9, 54)}.
APPEARS IN
RELATED QUESTIONS
If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B).
If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.
Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that A × (B ∩ C) = (A × B) ∩ (A × C)
Let A and B be two sets such that n(A) = 3 and n (B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y and z are distinct elements.
If A and B are two set having 3 elements in common. If n(A) = 5, n(B) = 4, find n(A × B) and n[(A × B) ∩ (B × A)].
Let A and B be two sets. Show that the sets A × B and B × A have elements in common iff the sets A and B have an elements in common.
State whether of the statement is true or false. If the statement is false, re-write the given statement correctly:
If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}
State whether of the statement is true or false. If the statement is false, re-write the given statement correctly:
(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ϕ) = ϕ.
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(ii) (A × B) ∩ (A × C)
Find the domain of the real valued function of real variable:
(ii) \[f\left( x \right) = \frac{1}{x - 7}\]
Find the domain of the real valued function of real variable:
(iii) \[f\left( x \right) = \frac{3x - 2}{x + 1}\]
Find the domain of the real valued function of real variable:
(iii) \[f\left( x \right) = \sqrt{9 - x^2}\]
Find the domain of the real valued function of real variable:
(iv) \[f\left( x \right) = \frac{\sqrt{x - 2}}{3 - x}\]
Find the domain and range of the real valued function:
(i) \[f\left( x \right) = \frac{ax + b}{bx - a}\]
Find the domain and range of the real valued function:
(ii) \[f\left( x \right) = \frac{ax - b}{cx - d}\]
Find the domain and range of the real valued function:
(iii) \[f\left( x \right) = \sqrt{x - 1}\]
Find the domain and range of the real valued function:
(vii) \[f\left( x \right) = - \left| x \right|\]
Find the domain and range of the real valued function:
(ix) \[f\left( x \right) = \frac{1}{\sqrt{16 - x^2}}\]
If f(x) be defined on [−2, 2] and is given by \[f\left( x \right) = \begin{cases}- 1, & - 2 \leq x \leq 0 \\ x - 1, & 0 < x \leq 2\end{cases}\] and g(x)
\[= f\left( \left| x \right| \right) + \left| f\left( x \right) \right|\] , find g(x).
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine B × A
Let A = {–1, 2, 3} and B = {1, 3}. Determine A × B
If P = {x : x < 3, x ∈ N}, Q = {x : x ≤ 2, x ∈ W}. Find (P ∪ Q) × (P ∩ Q), where W is the set of whole numbers.
A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∩ C)
State True or False for the following statement.
If P = {1, 2}, then P × P × P = {(1, 1, 1), (2, 2, 2), (1, 2, 2), (2, 1, 1)}
State True or False for the following statement.
If A × B = {(a, x), (a, y), (b, x), (b, y)}, then A = {a, b}, B = {x, y}
The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to ______.