Advertisements
Advertisements
प्रश्न
Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(delt)`
उत्तर
z(x, y) = x3 – 3x2y3
`(delx)/(dels) = "e"^"t", (delx)/(del"t") = "se"^"t"`
`(dely)/(del"s") = "e"^-"t", (dely)/(del"t") = - "se"^-"t"`
`(delz)/(delx) = 3x^2 - 6x y^3`
`(delz)/(dely) = - 9x^2 y^2`
`(delz)/(del"s") = (delz)/(delx) (delx)/(dels) + (delz)/(dely) (dely)/(del"s")`
(3x2 – 6xy3) et – 9 (xy)2 e–t
[3 (s et)2 – 6 (s et) (se–t)3]et
– 9 (s et s e–t)2 × e–t
= (3 s2 e2t – 6 s4 e–2t) et – 9 s4 e–t
= 3s2 [(e2t – 2s2 e–2t) et – 3 e–t s2]
`(delz)/(del"s")` = 3s2 et (e2t – 2s2 e–2t – 3 e–2t s2)
`(delz)/(del"t") = (delz)/(delx) (delx)/(del"t") + (delz)/(dely) (dely)/(del"t")`
= (3x2 – 6xy3) (s et)+ (– 9x2y2) (– s e–t)
= [3 (s et)2 – 6 (s et) (s e–t)3] s et + 9(set s e–t)2 s e–t
= (3 s2 e2t – 6 s4 e–2t) s et + 9 s5 e–t
= 3 s3 e3t – 6 s5 e–t + 9 s5 e–t
= 3 s3 e3t + 3 s5 e–t
`(dely)/(del"t")` = 3 s3 (e3t + s2 e–t)
APPEARS IN
संबंधित प्रश्न
If w(x, y) = x3 – 3xy + 2y2, x, y ∈ R, find the linear approximation for w at (1, –1)
If u(x, y) = x2y + 3xy4, x = et and y = sin t, find `"du"/"dt"` and evaluate if at t = 0
Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`
If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`
Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find `("d"w)/"ds"` and evaluate at s = 0
Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find `(del"U")/(del"s"), (del"u")/(del"t")` and evaluate them at s = t = 1
W(x, y, z) = xy + yz + zx, x = u – v, y = uv, z = u + v, u, v ∈ R. Find `(del"W")/(del"u"), (del"W")/(del"v")` and evaluate them at `(1/2, 1)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
f(x, y) = x2y + 6x3 + 7
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`
Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f
Prove that g(x, y) = `x log(y/x)` is homogeneous What is the degree? Verify Eulers Theorem for g
Choose the correct alternative:
If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to
Choose the correct alternative:
If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is