हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find s∂z∂s and ∂z∂t - Mathematics

Advertisements
Advertisements

प्रश्न

Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(delt)`

योग

उत्तर

z(x, y) = x3 – 3x2y3 

`(delx)/(dels) = "e"^"t", (delx)/(del"t") = "se"^"t"`

`(dely)/(del"s") = "e"^-"t", (dely)/(del"t") = - "se"^-"t"`

`(delz)/(delx) = 3x^2 - 6x  y^3`

`(delz)/(dely) = - 9x^2 y^2`

`(delz)/(del"s") = (delz)/(delx) (delx)/(dels) + (delz)/(dely) (dely)/(del"s")`

(3x2 – 6xy3) et – 9 (xy)2 e–t

[3 (s et)2 – 6 (s et) (set)3]et

9 (s et s et)2 × et

= (3 s2 e2t – 6 s4 e2t) et – 9 s4 et

= 3s2 [(e2t – 2s2 e2t) et 3 et s2]

`(delz)/(del"s")` = 3s2 et (e2t – 2s2 e2t – 3 e2t s2)

`(delz)/(del"t") = (delz)/(delx) (delx)/(del"t") + (delz)/(dely) (dely)/(del"t")`

= (3x2 – 6xy3) (s et)+ (– 9x2y2) (– s et)

= [3 (s et)2 – 6 (s et) (s et)3] s et + 9(set s et)2 s et

= (3 s2 e2t – 6 s4 e2t) s et + 9 s5 et

= 3 s3 e3t – 6 s5 et + 9 s5 et

= 3 s3 e3t + 3 s5 et 

`(dely)/(del"t")` = 3 s3 (e3t + s2 et)

shaalaa.com
Linear Approximation and Differential of a Function of Several Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differentials and Partial Derivatives - Exercise 8.6 [पृष्ठ ८४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 8 Differentials and Partial Derivatives
Exercise 8.6 | Q 8 | पृष्ठ ८४

संबंधित प्रश्न

If w(x, y) = x3 – 3xy + 2y2, x, y ∈ R, find the linear approximation for w at (1, –1)


If u(x, y) = x2y + 3xy4, x = et and y = sin t, find `"du"/"dt"` and evaluate if at t = 0


Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`


If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`


Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find `("d"w)/"ds"` and evaluate at s = 0


Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find `(del"U")/(del"s"), (del"u")/(del"t")` and evaluate them at s = t = 1


W(x, y, z) = xy + yz + zx, x = u – v, y = uv, z = u + v, u, v ∈ R. Find `(del"W")/(del"u"), (del"W")/(del"v")` and evaluate them at `(1/2, 1)`


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

f(x, y) = x2y + 6x3 + 7


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)` 


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`


Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f


Prove that g(x, y) = `x log(y/x)` is homogeneous What is the degree? Verify Eulers Theorem for g


Choose the correct alternative:

If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to


Choose the correct alternative:

If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×