Advertisements
Advertisements
प्रश्न
Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f
उत्तर
f(x, y) = x3 – 2x2y + 3xy2 + y3
f(λx, λy) = λ3x3 – 2λ2x2λy + 3λxλ2y2 + λ3y3
= λ3(x3 – 2x2y + 3xy2 + y3)
f is a homogeneous function of degree 3
By Euler’s Theorem,
`x (del"f")/(delx) + y (del"f")/(dely) = 3"f"`
Verification:
f(x, y) = `x^3 - 2x^2y + xy^2 + y^3`
`(del"f")/(delx) = 3x^2 - 4xy + 3y^2`
`x (del"f")/(delx) = 3x^3 - 4x^2y + 3xy^2`
`(del"f")/(dely) = - 2x^2 6xy + 3y^2`
`y (delf)/(dely) = - 2x^2y + 6xy^2 + y^2`
`x (del"f")/(dely) + y (del"f")/(dely)` = 3x3 – 4x2y + 3xy² – 2x2y + 6xy2 + 3y3
= 3x3 – 6x2y + 9xy2 + 3y3
= 3(x3 – 2x2y + 3xy2 + y3)
`x (del"f")/(delx) + y (del"f")/(dely) = 3"f"`
We verified the Euler’s Theorem.
APPEARS IN
संबंधित प्रश्न
If u(x, y) = x2y + 3xy4, x = et and y = sin t, find `"du"/"dt"` and evaluate if at t = 0
If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`
Let U(x, y, z) = xyz, x = e–t, y = e–t cos t, z – sin t, t ∈ R, find `"dU"/"dt"`
Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find `(del"U")/(del"s"), (del"u")/(del"t")` and evaluate them at s = t = 1
Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(delt)`
W(x, y, z) = xy + yz + zx, x = u – v, y = uv, z = u + v, u, v ∈ R. Find `(del"W")/(del"u"), (del"W")/(del"v")` and evaluate them at `(1/2, 1)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
f(x, y) = x2y + 6x3 + 7
If `"u"(x , y) = (x^2 + y^2)/sqrt(x + y)`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 3/2 "u"`
If v(x, y) = `log((x^2 + y^2)/(x + y))`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 1`
Choose the correct alternative:
If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to
Choose the correct alternative:
If w(x, y) = xy, x > 0, then `(del"w")/(delx)` is equal to
Choose the correct alternative:
If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to
Choose the correct alternative:
f u(x, y) = x2 + 3xy + y – 2019, then `(delu)/(delx) "|"_(((4 , - 5)))` is equal to
Choose the correct alternative:
If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is
Choose the correct alternative:
If f(x, y, z) = xy + yz + zx, then fx – fz is equal to