English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f - Mathematics

Advertisements
Advertisements

Question

Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f

Sum

Solution

f(x, y) = x3 – 2x2y + 3xy2 + y3

f(λx, λy) = λ3x3 – 2λ2x2λy + 3λxλ2y2 + λ3y3

= λ3(x3 – 2x2y + 3xy2 + y3)

f is a homogeneous function of degree 3

By Euler’s Theorem,

`x  (del"f")/(delx) + y (del"f")/(dely) = 3"f"`

Verification:

f(x, y) = `x^3 - 2x^2y + xy^2 + y^3`

`(del"f")/(delx) = 3x^2 - 4xy + 3y^2`

`x (del"f")/(delx) = 3x^3 - 4x^2y + 3xy^2`

`(del"f")/(dely) = - 2x^2 6xy + 3y^2`

`y (delf)/(dely) = - 2x^2y + 6xy^2 + y^2`

`x (del"f")/(dely) + y (del"f")/(dely)` = 3x3 – 4x2y + 3xy² – 2x2y + 6xy2 + 3y3

= 3x3 – 6x2y + 9xy2 + 3y3

= 3(x3 – 2x2y + 3xy2 + y3)

`x  (del"f")/(delx) + y (del"f")/(dely) = 3"f"`

We verified the Euler’s Theorem.

shaalaa.com
Linear Approximation and Differential of a Function of Several Variables
  Is there an error in this question or solution?
Chapter 8: Differentials and Partial Derivatives - Exercise 8.7 [Page 86]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 8 Differentials and Partial Derivatives
Exercise 8.7 | Q 2 | Page 86

RELATED QUESTIONS

Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`


If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`


Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find `("d"w)/"ds"` and evaluate at s = 0


Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1


Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find `(del"U")/(del"s"), (del"u")/(del"t")` and evaluate them at s = t = 1


Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(delt)`


W(x, y, z) = xy + yz + zx, x = u – v, y = uv, z = u + v, u, v ∈ R. Find `(del"W")/(del"u"), (del"W")/(del"v")` and evaluate them at `(1/2, 1)`


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

f(x, y) = x2y + 6x3 + 7


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`


If v(x, y) = `log((x^2 + y^2)/(x + y))`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 1`


If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`


Choose the correct alternative:

If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to


Choose the correct alternative:

If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to


Choose the correct alternative:

f u(x, y) = x2 + 3xy + y – 2019, then `(delu)/(delx) "|"_(((4 , - 5)))` is equal to


Choose the correct alternative:

If f(x, y, z) = xy + yz + zx, then fx – fz is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×