Advertisements
Advertisements
Question
Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`
Solution
u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t
`"du"/("d"x) = y^2z^3 , ("d"x)/"dt"` = cos t
`"du"/("d"y) = 2xyz^3, ("d"y)/"dt"` = – sin t
`"du"/("d"z) = 3xy^2z^2, ("d"z)/"dt"` = 2e2t
`"du"/"dt" = "d"/("d"x) ("d"x)/"dt" + "du"/("d"y) ("d"y)/"dt" + "du"/("d"z) ("d"z)/"dt"`
= y2z3 cos t – 2xyz3 sin t + 6 xy2z2 e2t
= cos2t (1 + e2t)3 cost – 2 (sin t) cost (1 + e2t)3 sin t + 6 (sin t) cos2t) (1 + e2t)2 e2t
= (1 + e2t)2 [cos3t (1 + e2t) – sin t sin2t (1 + e2t) + 6 e2t sin t cos2t]
APPEARS IN
RELATED QUESTIONS
If w(x, y) = x3 – 3xy + 2y2, x, y ∈ R, find the linear approximation for w at (1, –1)
If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`
Let U(x, y, z) = xyz, x = e–t, y = e–t cos t, z – sin t, t ∈ R, find `"dU"/"dt"`
Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1
Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(delt)`
W(x, y, z) = xy + yz + zx, x = u – v, y = uv, z = u + v, u, v ∈ R. Find `(del"W")/(del"u"), (del"W")/(del"v")` and evaluate them at `(1/2, 1)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
f(x, y) = x2y + 6x3 + 7
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
U(x, y, z) = `xy + sin((y^2 - 2z^2)/(xy))`
Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f
If `"u"(x , y) = (x^2 + y^2)/sqrt(x + y)`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 3/2 "u"`
If v(x, y) = `log((x^2 + y^2)/(x + y))`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 1`
Choose the correct alternative:
If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to
Choose the correct alternative:
If f(x, y, z) = xy + yz + zx, then fx – fz is equal to