English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

If w(x, y) = x3 – 3xy + 2y2, x, y ∈ R, find the linear approximation for w at (1, –1) - Mathematics

Advertisements
Advertisements

Question

If w(x, y) = x3 – 3xy + 2y2, x, y ∈ R, find the linear approximation for w at (1, –1)

Sum

Solution

w(x, y) = x3 – 3xy + 2y2, at (1, –1)

Linear approximation is given by

L(x, y, z) = `"w"(x_0, y_0) + (delw)/(delx) "|"_(((x_0, y_0)))  (x - x_0) + (delw)/(dely) "|"_(((x_0, y_0))) (y - y_0)`

w(1, –1) = 1 + 3 + 2 = 6

`(delw)/(delx) = 3x^2 - 3y`

`(delw)/(dely) = -3x + 4y`

`(delw)/(delx) |_(((1, -1)))` = 3 + 3 = 6

`(delw)/(dely) |_(((1, -1)))` =– 3 – 4 = –7

∴ L(x, y, z) = 6 + 6(x – 1) – 7(y + 1)

L(x, y, z) = 6x – 7y – 7

shaalaa.com
Linear Approximation and Differential of a Function of Several Variables
  Is there an error in this question or solution?
Chapter 8: Differentials and Partial Derivatives - Exercise 8.5 [Page 81]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 8 Differentials and Partial Derivatives
Exercise 8.5 | Q 1 | Page 81

RELATED QUESTIONS

If u(x, y) = x2y + 3xy4, x = et and y = sin t, find `"du"/"dt"` and evaluate if at t = 0


Let U(x, y, z) = xyz, x = e–t, y = et cos t, z – sin t, t ∈ R, find `"dU"/"dt"`


Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find `("d"w)/"ds"` and evaluate at s = 0


Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1


Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find `(del"U")/(del"s"), (del"u")/(del"t")` and evaluate them at s = t = 1


Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(delt)`


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)` 


If `"u"(x , y) = (x^2 + y^2)/sqrt(x + y)`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 3/2 "u"`


If v(x, y) = `log((x^2 + y^2)/(x + y))`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 1`


If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`


Choose the correct alternative:

If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to


Choose the correct alternative:

f u(x, y) = x2 + 3xy + y – 2019, then `(delu)/(delx) "|"_(((4 , - 5)))` is equal to


Choose the correct alternative:

If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is 


Choose the correct alternative:

If f(x, y, z) = xy + yz + zx, then fx – fz is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×