Advertisements
Advertisements
Question
Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)
Solution
z(x, y) = x2y + 3xy4 at (2, –1)
Here `(x_0, y_0)` = (2, –1)
`(delz)/(delx) = 2xy + 3y^4`
`(delz)/(dely) = x^2 + 12xy^3`
At (2, –1)
z = `(2)^2(- 1) + 3(2) (- 1)^4`
= `- 4 + 6`
= 2
`(delz)/(delx) = 2(2)(- 1) + 3(- 1)^4`
= `- 4 + 3`
= –1
`(delz)/(dely) = (2)^2 12(2)(- 1)^3`
= `4 - 24`
= – 20
Linear approximation is given by
L(x, y) = `z(x_0 + y_0) + ((delz)/(delx))_(((x_0, y_0))) (x - x_0) + ((delz)/(dely))_(((x_0, y_0))) (y - y_0)`
= `2 + (- 1)(x - 2) - 20(y + 1)`
= `2 - x + 2 - 20y - 20`
= ` x - 20y 16`
= `- (x + 20y + 16)`
APPEARS IN
RELATED QUESTIONS
If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).
Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`
If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
Find the partial dervatives of the following functions at indicated points.
f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)
Find the partial dervatives of the following functions at indicated points.
g(x, y) = 3x2 + y2 + 5x + 2, (2, – 5)
Find the partial derivatives of the following functions at indicated points.
h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`
Find the partial derivatives of the following functions at the indicated points.
`"G"(x, y) = "e"^(x + 3y) log(x^2 + y^2), (- 1, 1)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `(3x)/(y + sinx)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `tan^-1 (x/y)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `cos(x^2 - 3xy)`
If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`
If U(x, y, z) = `log(x^3 + y^3 + z^3)`, find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = x2 + 3xy – 7y + cos(5x)
Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0
If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0
Choose the correct alternative:
If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to