English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1) - Mathematics

Advertisements
Advertisements

Question

Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)

Sum

Solution

z(x, y) = x2y + 3xy4 at (2, –1)

Here `(x_0, y_0)` = (2, –1)

`(delz)/(delx) = 2xy + 3y^4`

`(delz)/(dely) = x^2 + 12xy^3`

At (2, –1)

z = `(2)^2(- 1) + 3(2) (- 1)^4`

= `- 4 + 6`

= 2

`(delz)/(delx) = 2(2)(- 1) + 3(- 1)^4`

= `- 4 + 3`

= –1

`(delz)/(dely) = (2)^2  12(2)(- 1)^3`

= `4 - 24`

= – 20

Linear approximation is given by

L(x, y) = `z(x_0 + y_0) + ((delz)/(delx))_(((x_0, y_0))) (x - x_0) + ((delz)/(dely))_(((x_0, y_0)))  (y - y_0)`

= `2 + (- 1)(x - 2) - 20(y + 1)`

= `2 - x + 2 - 20y - 20`

= ` x - 20y  16`

= `- (x + 20y + 16)`

shaalaa.com
Partial Derivatives
  Is there an error in this question or solution?
Chapter 8: Differentials and Partial Derivatives - Exercise 8.5 [Page 81]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 8 Differentials and Partial Derivatives
Exercise 8.5 | Q 2 | Page 81

RELATED QUESTIONS

If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).


Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`


If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:


If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:


Find the partial dervatives of the following functions at indicated points.

f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)


Find the partial dervatives of the following functions at indicated points.

g(x, y) = 3x2 + y2 + 5x + 2, (2, – 5)


Find the partial derivatives of the following functions at indicated points.

 h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`


Find the partial derivatives of the following functions at the indicated points.

`"G"(x, y) = "e"^(x + 3y)  log(x^2 + y^2), (- 1, 1)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `(3x)/(y + sinx)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `tan^-1 (x/y)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `cos(x^2 - 3xy)`


If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`


If U(x, y, z) = `log(x^3 + y^3 + z^3)`,  find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = x2 + 3xy – 7y + cos(5x)


Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0


If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0


Choose the correct alternative:

If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×