English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

If V(x, y) = ex (x cosy – y siny), then Prove that VV∂2V∂x2+∂2V∂y2 = 0 - Mathematics

Advertisements
Advertisements

Question

If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0

Sum

Solution

V(x, y) = ex (x cosy – y siny)

`(del"V")/(delx)` = ex (x cosy – y siny) + ex cosy

`(del^2"V")/(delx^2)` = ex (x cosy – y siny) + ex cosy + ex cosy

`(del"V")/(dely)` = – xex (– siny) – ex (y cosy + siny)

`(del^2"V")/(dely^2)` = – xex cosy – ex (y(– siny) + cosy + cosy)

 = – ex (x cosy – y siny) – 2ex cosy

`(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = ex [x cosy – y siny] + 2ex cosy

– ex (x cosy – y siny) – 2ex cosy

 0

shaalaa.com
Partial Derivatives
  Is there an error in this question or solution?
Chapter 8: Differentials and Partial Derivatives - Exercise 8.4 [Page 79]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 7 | Page 79

RELATED QUESTIONS

If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.


Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`


Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.


If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:


If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:


If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:


Find the partial dervatives of the following functions at indicated points.

f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)


Find the partial dervatives of the following functions at indicated points.

g(x, y) = 3x2 + y2 + 5x + 2, (2, – 5)


Find the partial derivatives of the following functions at indicated points.

 h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`


Find the partial derivatives of the following functions at the indicated points.

`"G"(x, y) = "e"^(x + 3y)  log(x^2 + y^2), (- 1, 1)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `tan^-1 (x/y)`


If U(x, y, z) = `log(x^3 + y^3 + z^3)`,  find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = log(5x + 3y)


If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`


A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C (x, y) = 8x + 6y + 2000 respectively. Find the profit function P(x, y)


A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results


Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×