Advertisements
Advertisements
Question
If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.
Solution
Given, z = (ax + b) (cy + d)
Differentiating partially with respect to x we get,
`(∂z)/(∂x) = ("c"y + "d") ∂/(∂x) ("a"x + "b")` ...[∵ (cy + d) is constant]
= (cy + d) (a + 0)
= a(cy + d)
Differentiating partially with respect to y we get,
`(∂z)/(∂y) = ("a"x + "b") (∂)/(∂y)`(cy + d)
= (ax + b)(c + 0)
= c(ax + b)
APPEARS IN
RELATED QUESTIONS
Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.
If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:
If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:
Find the partial dervatives of the following functions at indicated points.
f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)
Find the partial derivatives of the following functions at indicated points.
h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`
Find the partial derivatives of the following functions at the indicated points.
`"G"(x, y) = "e"^(x + 3y) log(x^2 + y^2), (- 1, 1)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = xey + 3x2y
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = log(5x + 3y)
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = x2 + 3xy – 7y + cos(5x)
Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)