English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 11

Verify Euler’s theorem for the function u = x3 + y3 + 3xy2. - Business Mathematics and Statistics

Advertisements
Advertisements

Question

Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.

Sum

Solution

u = x3 + y3 + 3xy2

i.e., u(x, y) = x3 + y3 + 3xy2

u(tx, ty) = (tx)3 + (ty)3 + 3(tx) (ty)2

= t3x3 + t3y3 + 3tx (t2y2)

= t3(x3 + y3 + 3xy2)

= t3u

∴ u is a homogeneous function in x and y of degree 3.

∴ By Euler’s theorem, `x * (del"u")/(delx) + y * (del"u")/(dely)` = 3u

Verification:

u = x3 + y3 + 3xy

`(del"u")/(delx) = 3x^2 + 0 + 3y^2 delk/(delx)`(x)

= 3x2 + 3y2(1)

= 3x2 + 3y2 …….. (1)

`therefore x * (del"u")/(delx)` = 3x3 + 3xy

`(del"u")/(dely) = 0 + 3y^2 + 3x(2y) = 3y^2 + 6xy`

`y * (del"u")/(dely)` = 3y3 + 6xy2 ……… (2)

∴ (1) + (2) gives

`x * (del"u")/(delx) + y * (del"u")/(dely)` = 3x3 + 3y3 + 9xy

= 3(x3 + y3 + 3xy2)

= 3u

Hence Euler’s theorem is verified.

shaalaa.com
Partial Derivatives
  Is there an error in this question or solution?
Chapter 6: Applications of Differentiation - Exercise 6.4 [Page 152]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 11 TN Board
Chapter 6 Applications of Differentiation
Exercise 6.4 | Q 4 | Page 152
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×