Advertisements
Advertisements
Question
Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.
Solution
u = x3 + y3 + 3xy2
i.e., u(x, y) = x3 + y3 + 3xy2
u(tx, ty) = (tx)3 + (ty)3 + 3(tx) (ty)2
= t3x3 + t3y3 + 3tx (t2y2)
= t3(x3 + y3 + 3xy2)
= t3u
∴ u is a homogeneous function in x and y of degree 3.
∴ By Euler’s theorem, `x * (del"u")/(delx) + y * (del"u")/(dely)` = 3u
Verification:
u = x3 + y3 + 3xy2
`(del"u")/(delx) = 3x^2 + 0 + 3y^2 delk/(delx)`(x)
= 3x2 + 3y2(1)
= 3x2 + 3y2 …….. (1)
`therefore x * (del"u")/(delx)` = 3x3 + 3xy2
`(del"u")/(dely) = 0 + 3y^2 + 3x(2y) = 3y^2 + 6xy`
`y * (del"u")/(dely)` = 3y3 + 6xy2 ……… (2)
∴ (1) + (2) gives
`x * (del"u")/(delx) + y * (del"u")/(dely)` = 3x3 + 3y3 + 9xy2
= 3(x3 + y3 + 3xy2)
= 3u
Hence Euler’s theorem is verified.
APPEARS IN
RELATED QUESTIONS
If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
Find the partial derivatives of the following functions at indicated points.
h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`
Find the partial derivatives of the following functions at the indicated points.
`"G"(x, y) = "e"^(x + 3y) log(x^2 + y^2), (- 1, 1)`
If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`
If U(x, y, z) = `log(x^3 + y^3 + z^3)`, find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = log(5x + 3y)
If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0
Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV
Choose the correct alternative:
If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to