Advertisements
Advertisements
Question
Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`
Solution
Given, u = x2y3 cos`(x/y)`
i.e., u(tx, ty) = (tx)2 (ty)3 cos`("tx"/"ty")`
= t2x2t3y3 cos`(x/y)`
= t5x2y3 cos`(x/y)`
= t5 u
∴ u is a homogeneous function in x and y of degree 5.
∴ By Euler’s theorem, `x * (del"u")/(delx) + y * (del"u")/(dely)` = 5u
Hence Proved.
APPEARS IN
RELATED QUESTIONS
If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:
Find the partial derivatives of the following functions at indicated points.
h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `cos(x^2 - 3xy)`
Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0
Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)
If v(x, y) = `x^2 - xy + 1/4 y^2 + 7, x, y ∈ "R"`, find the differential dv
Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV