Advertisements
Advertisements
Question
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
Options
2x`e^(x^2)`
`e^(x^2)`
2`e^(x^2)`
0
Solution
2x`e^(x^2)`
APPEARS IN
RELATED QUESTIONS
Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.
If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:
Find the partial derivatives of the following functions at indicated points.
h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `cos(x^2 - 3xy)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = xey + 3x2y
If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0
If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results
Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)
Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV