Advertisements
Advertisements
Question
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `cos(x^2 - 3xy)`
Solution
`(del"f")/(delx) = - sin(x^2 - 3xy) [2x - 3y]`
= `(3y - 2x) sin(x^2 - 3xy)`
`(del"f")/(dely) = - sin(x^2 - 3xy)[0 - 3x]`
= `3x sin(x^2 - 3xy)`
`(del^2"f")/(delxdely) = del/(delx)[(del"f")/(dely)]`
=`del/(delx) [3x sin(x^2 - 3xy)]`
= `3x [cos (x^2 - 3xy)* (2x - 3y) + sin(x^2 - 3xy) [3]]`
= `3x(2x - 3y) cos(x^2 - 3xy) + 3 sin(x^2 - 3xy)` ........(1)
`(del^2"f")/(delydelx) = del/(dely) [(del"f")/(delx)]`
= `el/(dely) [(3y - 2x) sin(x^2 - 3xy)]`
= `(3y - 2x) [cos(x^2 - 3xy)*(- 3x)] + sin)x^2 - 3xy) [3]`
`3x (2x - 3y) cos(x^2 - 3xy) + 3sin (x^2 - 3xy)` ........(2)
From (1) and (2)
⇒ `(del^2"f")/(delxdely) = (del^2"f")/(delydelx)`
APPEARS IN
RELATED QUESTIONS
If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).
Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`
Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`
Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.
If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
Find the partial dervatives of the following functions at indicated points.
f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)
Find the partial derivatives of the following functions at indicated points.
h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`
Find the partial derivatives of the following functions at the indicated points.
`"G"(x, y) = "e"^(x + 3y) log(x^2 + y^2), (- 1, 1)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `(3x)/(y + sinx)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `tan^-1 (x/y)`
If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`
If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`
If v(x, y) = `x^2 - xy + 1/4 y^2 + 7, x, y ∈ "R"`, find the differential dv
Choose the correct alternative:
If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to