English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

For the following functions find the fx, and fy and show that fxy = fyx f(x, y) = cos(x2-3xy) - Mathematics

Advertisements
Advertisements

Question

For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `cos(x^2 - 3xy)`

Sum

Solution

`(del"f")/(delx) = - sin(x^2 - 3xy) [2x - 3y]`

= `(3y - 2x) sin(x^2 - 3xy)`

`(del"f")/(dely) = - sin(x^2 - 3xy)[0 - 3x]`

= `3x sin(x^2 - 3xy)`

`(del^2"f")/(delxdely) = del/(delx)[(del"f")/(dely)]`

=`del/(delx) [3x sin(x^2 - 3xy)]`

= `3x [cos (x^2 - 3xy)* (2x - 3y) + sin(x^2 - 3xy) [3]]`

= `3x(2x - 3y) cos(x^2 - 3xy) + 3 sin(x^2 - 3xy)` ........(1)

`(del^2"f")/(delydelx) = del/(dely) [(del"f")/(delx)]`

= `el/(dely) [(3y - 2x) sin(x^2 - 3xy)]`

= `(3y - 2x) [cos(x^2 - 3xy)*(- 3x)] + sin)x^2 - 3xy) [3]`

 `3x (2x - 3y) cos(x^2 - 3xy) + 3sin (x^2 - 3xy)`  ........(2)

From (1) and (2)

⇒ `(del^2"f")/(delxdely) = (del^2"f")/(delydelx)`

shaalaa.com
Partial Derivatives
  Is there an error in this question or solution?
Chapter 8: Differentials and Partial Derivatives - Exercise 8.4 [Page 79]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 2. (iii) | Page 79

RELATED QUESTIONS

If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).


Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`


Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`


Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.


If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:


If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:


Find the partial dervatives of the following functions at indicated points.

f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)


Find the partial derivatives of the following functions at indicated points.

 h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`


Find the partial derivatives of the following functions at the indicated points.

`"G"(x, y) = "e"^(x + 3y)  log(x^2 + y^2), (- 1, 1)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `(3x)/(y + sinx)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `tan^-1 (x/y)`


If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`


If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`


If v(x, y) = `x^2 - xy + 1/4  y^2 + 7, x, y ∈ "R"`, find the differential dv


Choose the correct alternative:

If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×