Advertisements
Advertisements
Question
Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`
Solution
u = x cos y + y cos x
Differentiating partially with respect to y, we get,
`(delu)/(dely) = del/(dely) (x cos y) + del/(dely) (y cos x)`
`= x del/(del y) (cos y) + cos x ddel/(del y) (y)`
= x(-sin y) + cos x
Again differentiating partially with respect to x, we get
`del/(delx) ((delu)/(dely)) = del/(delx) (- x sin y) + del/(delx) (cos x)`
`= del/(delx) (- x sin y) + del/(delx) (cos x)`
`= - sin y del/(delx) (x) + (- sin x)`
= -sin y (1) + (-sin x)
= -sin y – sin x ……… (1)
Now u = x cos y + y cos x
Differentiating partially with respect to x we get
`(delu)/(delx) = cos y del/(delx) (x) + y del/(delx) (cos x)`
= cos y (1) + y(-sin x)
= cos y – y sin x
Again differentiating partially with respect to y we get,
`del/(dely) ((delu)/(dely)) = del/(dely) (cos y - y sin x)`
`= del/(dely) (cos y) - del/(dely) (y sin x)`
= -sin y – sin x `del/(dely)`(y)
= -sin y – sin x (1)
= -sin y – sin x ………(2)
From (1) and (2),
`(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`
Hence verified.
APPEARS IN
RELATED QUESTIONS
If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.
Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.
Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
Find the partial derivatives of the following functions at indicated points.
h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = x2 + 3xy – 7y + cos(5x)
If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results
Choose the correct alternative:
If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to