Advertisements
Advertisements
Question
Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.
Solution
Given u = `log (x^4 - y^4)/(x - y)`
Taking exponential both sides,
`e^"u" = ((x^4 - y^4)/(x - y)) ....[because e^(log x) = x]`
Let f = `"e"^"u" = (x^4 - y^4)/(x - y)`
∴ f(tx, ty) = `(("t"x)^4 - ("t"y)^4)/(tx - ty)`
`= ("t"^4 (x^4 - y^4))/("t" (x - y))`
`= "t"^3 ((x^4 - y^4)/(x - y))`
= t3f (x, y)
∴ f is a homogeneous function of degree 3.
By Euler’s theorem,
`x (del"f")/(del"x") + y(del"f")/(del"y")` = nf
`=> x * (del"f")/(del"x") + y * (del"f")/(del"y")` = 3f
`=> x * (del)/(delx) (e^"u") + y * (del)/(del "y") (e^"u") = 3 * "e"^"u" ...[because "f" = e^"u']`
`=> x * e^"u" (del^"u")/(del x) + y * e^"u" (del "u")/(del "y") = 3e^"u"`
Dividing throughout by eu, we get
`x (del "u")/(del x) + "y" (del "u")/(del "y")` = 3
Hence proved.
APPEARS IN
RELATED QUESTIONS
If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).
Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `(3x)/(y + sinx)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `cos(x^2 - 3xy)`
If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = x2 + 3xy – 7y + cos(5x)
If v(x, y) = `x^2 - xy + 1/4 y^2 + 7, x, y ∈ "R"`, find the differential dv