Advertisements
Advertisements
प्रश्न
Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.
उत्तर
Given u = `log (x^4 - y^4)/(x - y)`
Taking exponential both sides,
`e^"u" = ((x^4 - y^4)/(x - y)) ....[because e^(log x) = x]`
Let f = `"e"^"u" = (x^4 - y^4)/(x - y)`
∴ f(tx, ty) = `(("t"x)^4 - ("t"y)^4)/(tx - ty)`
`= ("t"^4 (x^4 - y^4))/("t" (x - y))`
`= "t"^3 ((x^4 - y^4)/(x - y))`
= t3f (x, y)
∴ f is a homogeneous function of degree 3.
By Euler’s theorem,
`x (del"f")/(del"x") + y(del"f")/(del"y")` = nf
`=> x * (del"f")/(del"x") + y * (del"f")/(del"y")` = 3f
`=> x * (del)/(delx) (e^"u") + y * (del)/(del "y") (e^"u") = 3 * "e"^"u" ...[because "f" = e^"u']`
`=> x * e^"u" (del^"u")/(del x) + y * e^"u" (del "u")/(del "y") = 3e^"u"`
Dividing throughout by eu, we get
`x (del "u")/(del x) + "y" (del "u")/(del "y")` = 3
Hence proved.
APPEARS IN
संबंधित प्रश्न
Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`
Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.
Find the partial derivatives of the following functions at indicated points.
h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `cos(x^2 - 3xy)`
If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`
If U(x, y, z) = `log(x^3 + y^3 + z^3)`, find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = log(5x + 3y)
Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0
If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`
If v(x, y) = `x^2 - xy + 1/4 y^2 + 7, x, y ∈ "R"`, find the differential dv