हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Find the partial derivatives of the following functions at indicated points. h(x, y, z) = x sin (xy) + z2x, (2,π4,1) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the partial derivatives of the following functions at indicated points.

 h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`

योग

उत्तर

h(x, y, z) = x sin (xy) + z2x

`(delh)/(delx)` = x[y cos (xy)] + sin (xy) + z2

`(delh)/(dely)` = x2 cos (xy)

`(delh)/(delz)` = 2zx

At `(2, pi/4, 1)`

`(delh)/(dely) = 2[pi/4 cos ((2pi)/4)] + sin ((2pi)/4) + (1)^2`

= `pi/2 cos  (pi/2) + sin  (pi/2) + 1`

= `pi/2 (0) + 1 + 1`

= 2

`(delh)/(dely) = (2)^2 cos  ((2pi)/4)`

= `4 cos (pi/2)`

= 4(0)

= 0

`(delh)/(delz)` = 2(1)(2)

= 4

shaalaa.com
Partial Derivatives
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differentials and Partial Derivatives - Exercise 8.4 [पृष्ठ ७९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 1. (iii) | पृष्ठ ७९

संबंधित प्रश्न

If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.


Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`


Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.


Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`


If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:


If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:


Find the partial dervatives of the following functions at indicated points.

f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `(3x)/(y + sinx)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `cos(x^2 - 3xy)`


If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = xey + 3x2y


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = log(5x + 3y)


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = x2 + 3xy – 7y + cos(5x)


If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`


A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C (x, y) = 8x + 6y + 2000 respectively. Find the profit function P(x, y)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×