हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

For the following functions find the gxy, gxx, gyy and gyx g(x, y) = xey + 3x2y - Mathematics

Advertisements
Advertisements

प्रश्न

For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = xey + 3x2y

योग

उत्तर

`(del"g")/(del"y") = "g"_x = "e"^y + 6xy`

`(del"g")/(dely) = "g"_y = x"e"^y + 3x^2`

gxx = `(del^2"g")/(delx^2)`

= `del/(delx) [(del"g")/(delx)]`

= `del/(delx) ["e"^y + 6xy]`

= 0 + 6y

= 6y

gyy = `(del^2"g")/(dely^2)`

= `del/(dely) [(del"g")/(dely)]`

= `del/(dely) [x"e"^y + 3x^2]`

= `x"e"^y`

gxy = `(del^2"g")/(delxdely)`

= `del/(delx) [(del"g")/(dely)]`

= `del/(delx) [x"e"^y + 3x^2]`

= `"e"^y + 6x`

gyx = `(del^2"g")/(delydelx)`

= `del/(dely) [(del"g")/(delx)]`

= `del/(dely) ["e"^y + 6xy]`

= `"e"^y + 6x`

shaalaa.com
Partial Derivatives
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differentials and Partial Derivatives - Exercise 8.4 [पृष्ठ ७९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 5. (i) | पृष्ठ ७९

संबंधित प्रश्न

If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.


If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).


Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`


Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`


If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:


If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:


Find the partial dervatives of the following functions at indicated points.

f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)


Find the partial dervatives of the following functions at indicated points.

g(x, y) = 3x2 + y2 + 5x + 2, (2, – 5)


Find the partial derivatives of the following functions at the indicated points.

`"G"(x, y) = "e"^(x + 3y)  log(x^2 + y^2), (- 1, 1)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `(3x)/(y + sinx)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `cos(x^2 - 3xy)`


If U(x, y, z) = `log(x^3 + y^3 + z^3)`,  find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = log(5x + 3y)


If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0


Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)


If v(x, y) = `x^2 - xy + 1/4  y^2 + 7, x, y ∈ "R"`, find the differential dv


Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV


Choose the correct alternative:

If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×