Advertisements
Advertisements
प्रश्न
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = xey + 3x2y
उत्तर
`(del"g")/(del"y") = "g"_x = "e"^y + 6xy`
`(del"g")/(dely) = "g"_y = x"e"^y + 3x^2`
gxx = `(del^2"g")/(delx^2)`
= `del/(delx) [(del"g")/(delx)]`
= `del/(delx) ["e"^y + 6xy]`
= 0 + 6y
= 6y
gyy = `(del^2"g")/(dely^2)`
= `del/(dely) [(del"g")/(dely)]`
= `del/(dely) [x"e"^y + 3x^2]`
= `x"e"^y`
gxy = `(del^2"g")/(delxdely)`
= `del/(delx) [(del"g")/(dely)]`
= `del/(delx) [x"e"^y + 3x^2]`
= `"e"^y + 6x`
gyx = `(del^2"g")/(delydelx)`
= `del/(dely) [(del"g")/(delx)]`
= `del/(dely) ["e"^y + 6xy]`
= `"e"^y + 6x`
APPEARS IN
संबंधित प्रश्न
If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.
If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).
Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`
Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
Find the partial dervatives of the following functions at indicated points.
f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)
Find the partial dervatives of the following functions at indicated points.
g(x, y) = 3x2 + y2 + 5x + 2, (2, – 5)
Find the partial derivatives of the following functions at the indicated points.
`"G"(x, y) = "e"^(x + 3y) log(x^2 + y^2), (- 1, 1)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `(3x)/(y + sinx)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `cos(x^2 - 3xy)`
If U(x, y, z) = `log(x^3 + y^3 + z^3)`, find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = log(5x + 3y)
If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0
Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)
If v(x, y) = `x^2 - xy + 1/4 y^2 + 7, x, y ∈ "R"`, find the differential dv
Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV
Choose the correct alternative:
If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to