Advertisements
Advertisements
प्रश्न
If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).
उत्तर
Given, u = exy
Differentiating partially with respect to x, we get,
`(del"u")/(del"x")` = y exy (Treating y as constant)
`(del^2"u")/(delx^2) = del/(delx) ("y"e^(xy))`
`= "y" del/(delx) (e^(xy))`
= y(yexy)
= y2exy ……… (1)
We have u = exy
Differentiating partially with respect to y,
`(del"u")/(del"y")`= x exy
Again differentiating partially with respect to x, we get,
`(del^2"u")/(dely^2) = del/(del"y")`(x exy)
`= "x" del/(delx) (e^(xy))`
= x2exy ……… (2)
Adding (1) and (2) we get,
`(del^2"u")/(delx^2) + (del^2"u")/(dely^2)` = exy(x2 + y2)
= u(x + y ) [∵ u = exy]
APPEARS IN
संबंधित प्रश्न
If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.
Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`
Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.
Find the partial dervatives of the following functions at indicated points.
f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)
Find the partial dervatives of the following functions at indicated points.
g(x, y) = 3x2 + y2 + 5x + 2, (2, – 5)
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `(3x)/(y + sinx)`
If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = log(5x + 3y)
If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results