हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा ११

If u = exy, then show that uuy∂2u∂x2+∂2u∂y2 = u(x2 + y2). - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).

योग

उत्तर

Given, u = exy

Differentiating partially with respect to x, we get,

`(del"u")/(del"x")` = y exy (Treating y as constant)

`(del^2"u")/(delx^2) = del/(delx) ("y"e^(xy))`

`= "y" del/(delx) (e^(xy))`

= y(yexy)

= y2exy ……… (1)

We have u = exy

Differentiating partially with respect to y,

`(del"u")/(del"y")`= x exy

Again differentiating partially with respect to x, we get,

`(del^2"u")/(dely^2) = del/(del"y")`(x exy)

`= "x" del/(delx) (e^(xy))`

= x2exy ……… (2)

Adding (1) and (2) we get,

`(del^2"u")/(delx^2) + (del^2"u")/(dely^2)` = exy(x2 + y2)

= u(x + y ) [∵ u = exy]

shaalaa.com
Partial Derivatives
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Applications of Differentiation - Exercise 6.4 [पृष्ठ १५२]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
अध्याय 6 Applications of Differentiation
Exercise 6.4 | Q 2 | पृष्ठ १५२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×