हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

For the following functions find the fx, and fy and show that fxy = fyx f(x, y) = 3xy+sinx - Mathematics

Advertisements
Advertisements

प्रश्न

For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `(3x)/(y + sinx)`

योग

उत्तर

fx = `((y + sinx)[3] - 3x[0 + cos x])/(y + sin x)^2`

= `(3y + 3sinx - 3xcosx)/(y + sinx)^2`

fy = `((y + sin x)[0] - 3x[1 + 0])/(y + sinx)^2`

= `(- 3x)/(y + sinx)^2`

`(del^2"f")/(delxdely) = del/(delx)[(- 3x)/(y + sinx)^2]`

= `((y + sinx)^2 [- 3] - (- 3x)2(y + sinx)[0 + cosx])/(y + sinx)^4`

= `(- 3(y + sinx)^2 + 6x cosx(y + sinx))/(y + sinx)^4`  ........(1)

`(del^2"f")/(delydelx) = del/(dely) [(3y + 3sinx - 3x cosx)/(y + sinx)^2]`

= `((y + sinx)^2[3] - (3y + 3sinx)2(y + sinx)(0 + cosx))/(y + sinx)^4`

= `(-3(y + sinx)^2 + 6x cos x(y + sinx))/(y + sin x)^4`  ........(2)

From (1) and (2)

⇒ `(del^2"f")/(delxdely) = (del^2"f")/(delydelx)`

shaalaa.com
Partial Derivatives
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differentials and Partial Derivatives - Exercise 8.4 [पृष्ठ ७९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 2. (i) | पृष्ठ ७९

संबंधित प्रश्न

If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.


If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).


Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.


Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`


If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:


Find the partial derivatives of the following functions at indicated points.

 h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `tan^-1 (x/y)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `cos(x^2 - 3xy)`


If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = xey + 3x2y


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = log(5x + 3y)


Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0


If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`


If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`


A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results


Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×