Advertisements
Advertisements
प्रश्न
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `(3x)/(y + sinx)`
उत्तर
fx = `((y + sinx)[3] - 3x[0 + cos x])/(y + sin x)^2`
= `(3y + 3sinx - 3xcosx)/(y + sinx)^2`
fy = `((y + sin x)[0] - 3x[1 + 0])/(y + sinx)^2`
= `(- 3x)/(y + sinx)^2`
`(del^2"f")/(delxdely) = del/(delx)[(- 3x)/(y + sinx)^2]`
= `((y + sinx)^2 [- 3] - (- 3x)2(y + sinx)[0 + cosx])/(y + sinx)^4`
= `(- 3(y + sinx)^2 + 6x cosx(y + sinx))/(y + sinx)^4` ........(1)
`(del^2"f")/(delydelx) = del/(dely) [(3y + 3sinx - 3x cosx)/(y + sinx)^2]`
= `((y + sinx)^2[3] - (3y + 3sinx)2(y + sinx)(0 + cosx))/(y + sinx)^4`
= `(-3(y + sinx)^2 + 6x cos x(y + sinx))/(y + sin x)^4` ........(2)
From (1) and (2)
⇒ `(del^2"f")/(delxdely) = (del^2"f")/(delydelx)`
APPEARS IN
संबंधित प्रश्न
If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.
If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).
Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.
Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
Find the partial derivatives of the following functions at indicated points.
h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `tan^-1 (x/y)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `cos(x^2 - 3xy)`
If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = xey + 3x2y
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = log(5x + 3y)
Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0
If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`
If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results
Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV