हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

For the following functions find the fx, and fy and show that fxy = fyx f(x, y) = cos(x2-3xy) - Mathematics

Advertisements
Advertisements

प्रश्न

For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `cos(x^2 - 3xy)`

योग

उत्तर

`(del"f")/(delx) = - sin(x^2 - 3xy) [2x - 3y]`

= `(3y - 2x) sin(x^2 - 3xy)`

`(del"f")/(dely) = - sin(x^2 - 3xy)[0 - 3x]`

= `3x sin(x^2 - 3xy)`

`(del^2"f")/(delxdely) = del/(delx)[(del"f")/(dely)]`

=`del/(delx) [3x sin(x^2 - 3xy)]`

= `3x [cos (x^2 - 3xy)* (2x - 3y) + sin(x^2 - 3xy) [3]]`

= `3x(2x - 3y) cos(x^2 - 3xy) + 3 sin(x^2 - 3xy)` ........(1)

`(del^2"f")/(delydelx) = del/(dely) [(del"f")/(delx)]`

= `el/(dely) [(3y - 2x) sin(x^2 - 3xy)]`

= `(3y - 2x) [cos(x^2 - 3xy)*(- 3x)] + sin)x^2 - 3xy) [3]`

 `3x (2x - 3y) cos(x^2 - 3xy) + 3sin (x^2 - 3xy)`  ........(2)

From (1) and (2)

⇒ `(del^2"f")/(delxdely) = (del^2"f")/(delydelx)`

shaalaa.com
Partial Derivatives
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differentials and Partial Derivatives - Exercise 8.4 [पृष्ठ ७९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 2. (iii) | पृष्ठ ७९

संबंधित प्रश्न

If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).


Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.


Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.


If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:


If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:


If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:


Find the partial dervatives of the following functions at indicated points.

f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)


Find the partial derivatives of the following functions at the indicated points.

`"G"(x, y) = "e"^(x + 3y)  log(x^2 + y^2), (- 1, 1)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `tan^-1 (x/y)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = xey + 3x2y


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = x2 + 3xy – 7y + cos(5x)


A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C (x, y) = 8x + 6y + 2000 respectively. Find the profit function P(x, y)


A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results


Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)


If v(x, y) = `x^2 - xy + 1/4  y^2 + 7, x, y ∈ "R"`, find the differential dv


Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV


Choose the correct alternative:

If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×