Advertisements
Advertisements
प्रश्न
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `cos(x^2 - 3xy)`
उत्तर
`(del"f")/(delx) = - sin(x^2 - 3xy) [2x - 3y]`
= `(3y - 2x) sin(x^2 - 3xy)`
`(del"f")/(dely) = - sin(x^2 - 3xy)[0 - 3x]`
= `3x sin(x^2 - 3xy)`
`(del^2"f")/(delxdely) = del/(delx)[(del"f")/(dely)]`
=`del/(delx) [3x sin(x^2 - 3xy)]`
= `3x [cos (x^2 - 3xy)* (2x - 3y) + sin(x^2 - 3xy) [3]]`
= `3x(2x - 3y) cos(x^2 - 3xy) + 3 sin(x^2 - 3xy)` ........(1)
`(del^2"f")/(delydelx) = del/(dely) [(del"f")/(delx)]`
= `el/(dely) [(3y - 2x) sin(x^2 - 3xy)]`
= `(3y - 2x) [cos(x^2 - 3xy)*(- 3x)] + sin)x^2 - 3xy) [3]`
`3x (2x - 3y) cos(x^2 - 3xy) + 3sin (x^2 - 3xy)` ........(2)
From (1) and (2)
⇒ `(del^2"f")/(delxdely) = (del^2"f")/(delydelx)`
APPEARS IN
संबंधित प्रश्न
If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).
Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.
Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:
Find the partial dervatives of the following functions at indicated points.
f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)
Find the partial derivatives of the following functions at the indicated points.
`"G"(x, y) = "e"^(x + 3y) log(x^2 + y^2), (- 1, 1)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `tan^-1 (x/y)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = xey + 3x2y
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = x2 + 3xy – 7y + cos(5x)
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C (x, y) = 8x + 6y + 2000 respectively. Find the profit function P(x, y)
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results
Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)
If v(x, y) = `x^2 - xy + 1/4 y^2 + 7, x, y ∈ "R"`, find the differential dv
Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV
Choose the correct alternative:
If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to