Advertisements
Advertisements
प्रश्न
Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.
उत्तर
u = x3 + y3 + 3xy2
i.e., u(x, y) = x3 + y3 + 3xy2
u(tx, ty) = (tx)3 + (ty)3 + 3(tx) (ty)2
= t3x3 + t3y3 + 3tx (t2y2)
= t3(x3 + y3 + 3xy2)
= t3u
∴ u is a homogeneous function in x and y of degree 3.
∴ By Euler’s theorem, `x * (del"u")/(delx) + y * (del"u")/(dely)` = 3u
Verification:
u = x3 + y3 + 3xy2
`(del"u")/(delx) = 3x^2 + 0 + 3y^2 delk/(delx)`(x)
= 3x2 + 3y2(1)
= 3x2 + 3y2 …….. (1)
`therefore x * (del"u")/(delx)` = 3x3 + 3xy2
`(del"u")/(dely) = 0 + 3y^2 + 3x(2y) = 3y^2 + 6xy`
`y * (del"u")/(dely)` = 3y3 + 6xy2 ……… (2)
∴ (1) + (2) gives
`x * (del"u")/(delx) + y * (del"u")/(dely)` = 3x3 + 3y3 + 9xy2
= 3(x3 + y3 + 3xy2)
= 3u
Hence Euler’s theorem is verified.
APPEARS IN
संबंधित प्रश्न
Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `(3x)/(y + sinx)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `tan^-1 (x/y)`
If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`
If U(x, y, z) = `log(x^3 + y^3 + z^3)`, find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = log(5x + 3y)
Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0
If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results
Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV