Advertisements
Advertisements
प्रश्न
Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`
उत्तर
Given, u = x2y3 cos`(x/y)`
i.e., u(tx, ty) = (tx)2 (ty)3 cos`("tx"/"ty")`
= t2x2t3y3 cos`(x/y)`
= t5x2y3 cos`(x/y)`
= t5 u
∴ u is a homogeneous function in x and y of degree 5.
∴ By Euler’s theorem, `x * (del"u")/(delx) + y * (del"u")/(dely)` = 5u
Hence Proved.
APPEARS IN
संबंधित प्रश्न
If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.
If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).
Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`
Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.
Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0
If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`
Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)