Advertisements
Advertisements
प्रश्न
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
विकल्प
2x`e^(x^2)`
`e^(x^2)`
2`e^(x^2)`
0
उत्तर
2x`e^(x^2)`
APPEARS IN
संबंधित प्रश्न
If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
Find the partial dervatives of the following functions at indicated points.
g(x, y) = 3x2 + y2 + 5x + 2, (2, – 5)
Find the partial derivatives of the following functions at indicated points.
h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `(3x)/(y + sinx)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `tan^-1 (x/y)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = log(5x + 3y)
If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0
If v(x, y) = `x^2 - xy + 1/4 y^2 + 7, x, y ∈ "R"`, find the differential dv
Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV