हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

For the following functions find the gxy, gxx, gyy and gyx g(x, y) = log(5x + 3y) - Mathematics

Advertisements
Advertisements

प्रश्न

For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = log(5x + 3y)

योग

उत्तर

gx = `(del"g")/(delx) = 1/(5x + 3y) (5) = 5/(5x + 3y)`

gy = `(del"g")/(dely) = 1/(5x + 3y) (3) = 3/(5x + 3y)`

gxx = `(del^2"g")/(delx^2)`

= `del/(delx) [(delg)/(delx)]`

= `del/(delx) [5/(5x + 3y)]`

= `((5x + 3y)(0) - 5(5))/(5x + 3y)^2`

= `(- 25)/(5x + 3y)^2`

gyy = `(del^2"g")/(dely^2)`

= `del/(dely) [(del"g")/(dely)]`

= `del/(dely) [3/(5x + 3y)]`

= `((5x + 3y)(0) - 3(3))/(5x + 3y)^2`

= `(- 9)/(5x + 3y)^2`

gxy = `(del^2"g")/(delxdely)`

= `del/(delx) [(del"g")/(dely)]`

= `del/(delx) [3/(5x + 3y)]`

= `(- 3)/(5x + 3y)^2 (5)`

= `(- 15)/(5x + 3y)^2`

gyx = `(del^2"g")/(delydelx)`

= `del/(dely) [(del"g")/(delx)]`

= `del/(dely) [5/(5x + 3y)]`

= `(- 5)/(5x + 3y)^2 (3)`

= `(- 15)/(5x + 3y)^2`

shaalaa.com
Partial Derivatives
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differentials and Partial Derivatives - Exercise 8.4 [पृष्ठ ७९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 5. (ii) | पृष्ठ ७९

संबंधित प्रश्न

If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.


Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`


Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.


Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.


If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:


If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:


If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:


If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:


Find the partial dervatives of the following functions at indicated points.

f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)


Find the partial dervatives of the following functions at indicated points.

g(x, y) = 3x2 + y2 + 5x + 2, (2, – 5)


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `(3x)/(y + sinx)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `tan^-1 (x/y)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `cos(x^2 - 3xy)`


If U(x, y, z) = `log(x^3 + y^3 + z^3)`,  find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = x2 + 3xy – 7y + cos(5x)


Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0


If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`


If v(x, y) = `x^2 - xy + 1/4  y^2 + 7, x, y ∈ "R"`, find the differential dv


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×