English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

For the following functions find the gxy, gxx, gyy and gyx g(x, y) = log(5x + 3y) - Mathematics

Advertisements
Advertisements

Question

For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = log(5x + 3y)

Sum

Solution

gx = `(del"g")/(delx) = 1/(5x + 3y) (5) = 5/(5x + 3y)`

gy = `(del"g")/(dely) = 1/(5x + 3y) (3) = 3/(5x + 3y)`

gxx = `(del^2"g")/(delx^2)`

= `del/(delx) [(delg)/(delx)]`

= `del/(delx) [5/(5x + 3y)]`

= `((5x + 3y)(0) - 5(5))/(5x + 3y)^2`

= `(- 25)/(5x + 3y)^2`

gyy = `(del^2"g")/(dely^2)`

= `del/(dely) [(del"g")/(dely)]`

= `del/(dely) [3/(5x + 3y)]`

= `((5x + 3y)(0) - 3(3))/(5x + 3y)^2`

= `(- 9)/(5x + 3y)^2`

gxy = `(del^2"g")/(delxdely)`

= `del/(delx) [(del"g")/(dely)]`

= `del/(delx) [3/(5x + 3y)]`

= `(- 3)/(5x + 3y)^2 (5)`

= `(- 15)/(5x + 3y)^2`

gyx = `(del^2"g")/(delydelx)`

= `del/(dely) [(del"g")/(delx)]`

= `del/(dely) [5/(5x + 3y)]`

= `(- 5)/(5x + 3y)^2 (3)`

= `(- 15)/(5x + 3y)^2`

shaalaa.com
Partial Derivatives
  Is there an error in this question or solution?
Chapter 8: Differentials and Partial Derivatives - Exercise 8.4 [Page 79]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 5. (ii) | Page 79

RELATED QUESTIONS

If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.


If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).


Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`


Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`


If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:


If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:


If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:


Find the partial dervatives of the following functions at indicated points.

g(x, y) = 3x2 + y2 + 5x + 2, (2, – 5)


Find the partial derivatives of the following functions at the indicated points.

`"G"(x, y) = "e"^(x + 3y)  log(x^2 + y^2), (- 1, 1)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `(3x)/(y + sinx)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `tan^-1 (x/y)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `cos(x^2 - 3xy)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = xey + 3x2y


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = x2 + 3xy – 7y + cos(5x)


Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0


If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`


Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×