Advertisements
Advertisements
Question
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = log(5x + 3y)
Solution
gx = `(del"g")/(delx) = 1/(5x + 3y) (5) = 5/(5x + 3y)`
gy = `(del"g")/(dely) = 1/(5x + 3y) (3) = 3/(5x + 3y)`
gxx = `(del^2"g")/(delx^2)`
= `del/(delx) [(delg)/(delx)]`
= `del/(delx) [5/(5x + 3y)]`
= `((5x + 3y)(0) - 5(5))/(5x + 3y)^2`
= `(- 25)/(5x + 3y)^2`
gyy = `(del^2"g")/(dely^2)`
= `del/(dely) [(del"g")/(dely)]`
= `del/(dely) [3/(5x + 3y)]`
= `((5x + 3y)(0) - 3(3))/(5x + 3y)^2`
= `(- 9)/(5x + 3y)^2`
gxy = `(del^2"g")/(delxdely)`
= `del/(delx) [(del"g")/(dely)]`
= `del/(delx) [3/(5x + 3y)]`
= `(- 3)/(5x + 3y)^2 (5)`
= `(- 15)/(5x + 3y)^2`
gyx = `(del^2"g")/(delydelx)`
= `del/(dely) [(del"g")/(delx)]`
= `del/(dely) [5/(5x + 3y)]`
= `(- 5)/(5x + 3y)^2 (3)`
= `(- 15)/(5x + 3y)^2`
APPEARS IN
RELATED QUESTIONS
If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.
If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).
Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`
Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:
Find the partial dervatives of the following functions at indicated points.
g(x, y) = 3x2 + y2 + 5x + 2, (2, – 5)
Find the partial derivatives of the following functions at the indicated points.
`"G"(x, y) = "e"^(x + 3y) log(x^2 + y^2), (- 1, 1)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `(3x)/(y + sinx)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `tan^-1 (x/y)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `cos(x^2 - 3xy)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = xey + 3x2y
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = x2 + 3xy – 7y + cos(5x)
Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0
If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`
Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV