Advertisements
Advertisements
Question
If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:
Options
-1
8
1000
1000 - p2
Solution
8
APPEARS IN
RELATED QUESTIONS
Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
Find the partial derivatives of the following functions at indicated points.
h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`
Find the partial derivatives of the following functions at the indicated points.
`"G"(x, y) = "e"^(x + 3y) log(x^2 + y^2), (- 1, 1)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `tan^-1 (x/y)`
If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`
If U(x, y, z) = `log(x^3 + y^3 + z^3)`, find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = log(5x + 3y)
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C (x, y) = 8x + 6y + 2000 respectively. Find the profit function P(x, y)
Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)