English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Find the partial derivatives of the following functions at indicated points. h(x, y, z) = x sin (xy) + z2x, (2,π4,1) - Mathematics

Advertisements
Advertisements

Question

Find the partial derivatives of the following functions at indicated points.

 h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`

Sum

Solution

h(x, y, z) = x sin (xy) + z2x

`(delh)/(delx)` = x[y cos (xy)] + sin (xy) + z2

`(delh)/(dely)` = x2 cos (xy)

`(delh)/(delz)` = 2zx

At `(2, pi/4, 1)`

`(delh)/(dely) = 2[pi/4 cos ((2pi)/4)] + sin ((2pi)/4) + (1)^2`

= `pi/2 cos  (pi/2) + sin  (pi/2) + 1`

= `pi/2 (0) + 1 + 1`

= 2

`(delh)/(dely) = (2)^2 cos  ((2pi)/4)`

= `4 cos (pi/2)`

= 4(0)

= 0

`(delh)/(delz)` = 2(1)(2)

= 4

shaalaa.com
Partial Derivatives
  Is there an error in this question or solution?
Chapter 8: Differentials and Partial Derivatives - Exercise 8.4 [Page 79]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 1. (iii) | Page 79

RELATED QUESTIONS

If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.


Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`


Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.


Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.


If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:


If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:


If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `(3x)/(y + sinx)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `tan^-1 (x/y)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `cos(x^2 - 3xy)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = log(5x + 3y)


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = x2 + 3xy – 7y + cos(5x)


If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`


A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C (x, y) = 8x + 6y + 2000 respectively. Find the profit function P(x, y)


A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results


If v(x, y) = `x^2 - xy + 1/4  y^2 + 7, x, y ∈ "R"`, find the differential dv


Choose the correct alternative:

If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×