English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

For the following functions find the fx, and fy and show that fxy = fyx f(x, y) = 3xy+sinx - Mathematics

Advertisements
Advertisements

Question

For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `(3x)/(y + sinx)`

Sum

Solution

fx = `((y + sinx)[3] - 3x[0 + cos x])/(y + sin x)^2`

= `(3y + 3sinx - 3xcosx)/(y + sinx)^2`

fy = `((y + sin x)[0] - 3x[1 + 0])/(y + sinx)^2`

= `(- 3x)/(y + sinx)^2`

`(del^2"f")/(delxdely) = del/(delx)[(- 3x)/(y + sinx)^2]`

= `((y + sinx)^2 [- 3] - (- 3x)2(y + sinx)[0 + cosx])/(y + sinx)^4`

= `(- 3(y + sinx)^2 + 6x cosx(y + sinx))/(y + sinx)^4`  ........(1)

`(del^2"f")/(delydelx) = del/(dely) [(3y + 3sinx - 3x cosx)/(y + sinx)^2]`

= `((y + sinx)^2[3] - (3y + 3sinx)2(y + sinx)(0 + cosx))/(y + sinx)^4`

= `(-3(y + sinx)^2 + 6x cos x(y + sinx))/(y + sin x)^4`  ........(2)

From (1) and (2)

⇒ `(del^2"f")/(delxdely) = (del^2"f")/(delydelx)`

shaalaa.com
Partial Derivatives
  Is there an error in this question or solution?
Chapter 8: Differentials and Partial Derivatives - Exercise 8.4 [Page 79]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 2. (i) | Page 79
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×