Advertisements
Advertisements
Question
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `(3x)/(y + sinx)`
Solution
fx = `((y + sinx)[3] - 3x[0 + cos x])/(y + sin x)^2`
= `(3y + 3sinx - 3xcosx)/(y + sinx)^2`
fy = `((y + sin x)[0] - 3x[1 + 0])/(y + sinx)^2`
= `(- 3x)/(y + sinx)^2`
`(del^2"f")/(delxdely) = del/(delx)[(- 3x)/(y + sinx)^2]`
= `((y + sinx)^2 [- 3] - (- 3x)2(y + sinx)[0 + cosx])/(y + sinx)^4`
= `(- 3(y + sinx)^2 + 6x cosx(y + sinx))/(y + sinx)^4` ........(1)
`(del^2"f")/(delydelx) = del/(dely) [(3y + 3sinx - 3x cosx)/(y + sinx)^2]`
= `((y + sinx)^2[3] - (3y + 3sinx)2(y + sinx)(0 + cosx))/(y + sinx)^4`
= `(-3(y + sinx)^2 + 6x cos x(y + sinx))/(y + sin x)^4` ........(2)
From (1) and (2)
⇒ `(del^2"f")/(delxdely) = (del^2"f")/(delydelx)`
APPEARS IN
RELATED QUESTIONS
Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.
Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`
If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:
Find the partial dervatives of the following functions at indicated points.
f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)
Find the partial dervatives of the following functions at indicated points.
g(x, y) = 3x2 + y2 + 5x + 2, (2, – 5)
Find the partial derivatives of the following functions at the indicated points.
`"G"(x, y) = "e"^(x + 3y) log(x^2 + y^2), (- 1, 1)`
If U(x, y, z) = `log(x^3 + y^3 + z^3)`, find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = xey + 3x2y
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = log(5x + 3y)
If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`
Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)
Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV