Advertisements
Advertisements
प्रश्न
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `(3x)/(y + sinx)`
उत्तर
fx = `((y + sinx)[3] - 3x[0 + cos x])/(y + sin x)^2`
= `(3y + 3sinx - 3xcosx)/(y + sinx)^2`
fy = `((y + sin x)[0] - 3x[1 + 0])/(y + sinx)^2`
= `(- 3x)/(y + sinx)^2`
`(del^2"f")/(delxdely) = del/(delx)[(- 3x)/(y + sinx)^2]`
= `((y + sinx)^2 [- 3] - (- 3x)2(y + sinx)[0 + cosx])/(y + sinx)^4`
= `(- 3(y + sinx)^2 + 6x cosx(y + sinx))/(y + sinx)^4` ........(1)
`(del^2"f")/(delydelx) = del/(dely) [(3y + 3sinx - 3x cosx)/(y + sinx)^2]`
= `((y + sinx)^2[3] - (3y + 3sinx)2(y + sinx)(0 + cosx))/(y + sinx)^4`
= `(-3(y + sinx)^2 + 6x cos x(y + sinx))/(y + sin x)^4` ........(2)
From (1) and (2)
⇒ `(del^2"f")/(delxdely) = (del^2"f")/(delydelx)`
APPEARS IN
संबंधित प्रश्न
If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.
If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).
Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:
Find the partial dervatives of the following functions at indicated points.
f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)
Find the partial derivatives of the following functions at indicated points.
h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`
If U(x, y, z) = `log(x^3 + y^3 + z^3)`, find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = log(5x + 3y)
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = x2 + 3xy – 7y + cos(5x)
Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0
If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`
If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C (x, y) = 8x + 6y + 2000 respectively. Find the profit function P(x, y)
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results
Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)
Choose the correct alternative:
If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to