Advertisements
Advertisements
प्रश्न
If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`
उत्तर
v(x, y, z) = x3 + y3 + z3 + 3xyz
`(del^2"v")/(delydelz) = del/(dely) [(del"v")/(delz)]`
= `del/(dely) [3z^2 + 3xy]`
= 3x .........(1)
`(del^2"v")/(delzdely) = del/(delz) [(del"v")/(delz)]`
= `del/(delz) [3y^2 + 3xz]`
= 3x .......(2)
From (1) and (2)
⇒ `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`
APPEARS IN
संबंधित प्रश्न
If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.
If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).
Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`
Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
Find the partial dervatives of the following functions at indicated points.
g(x, y) = 3x2 + y2 + 5x + 2, (2, – 5)
Find the partial derivatives of the following functions at indicated points.
h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `(3x)/(y + sinx)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `tan^-1 (x/y)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `cos(x^2 - 3xy)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = xey + 3x2y
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = x2 + 3xy – 7y + cos(5x)
Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0
If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`
If v(x, y) = `x^2 - xy + 1/4 y^2 + 7, x, y ∈ "R"`, find the differential dv
Choose the correct alternative:
If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to