Advertisements
Advertisements
प्रश्न
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `tan^-1 (x/y)`
उत्तर
`(del"f")/(delx) = 1/(1 + x^2/y^2) (1/y) = y/(x^2 + y^2)`
`(del"f")/(dely) = 1/(1 + x^2/y^2) ((-x)/y^2) = (-x)/(x^2 + y^2)`
`(del^2"f")/(delxdely) = del/(delx)[(del"f")/(dely)]`
= `del/(delx) [(-x)/(x^2 + y^2)]`
= `((x^2 + y^2)[- 1] - (- x)[2x])/(x^2 + y^2)^2`
= `(x^2 - y^2)/(x^2 + y^2)^2` ........(1)
`(del^2"f")/(delydelx) = del/(dely) [(del"f")/(delx)]`
= `del/(dely)[y/(x^2 + y^2)]`
= `((x^2 + y^2)[1] - y[2y])/(x^2 + y^2)^2`
= `(x^2 - y^2)/(x^2 + y^2)^2` ..........(2)
From (1) and (2)
⇒ `(del^2"f")/(delxdely) = (del^2"f")/(delydelx)`
APPEARS IN
संबंधित प्रश्न
If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.
Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`
Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`
Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
Find the partial dervatives of the following functions at indicated points.
f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)
Find the partial derivatives of the following functions at the indicated points.
`"G"(x, y) = "e"^(x + 3y) log(x^2 + y^2), (- 1, 1)`
If U(x, y, z) = `log(x^3 + y^3 + z^3)`, find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = xey + 3x2y
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = log(5x + 3y)
Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0
If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`
If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results
If v(x, y) = `x^2 - xy + 1/4 y^2 + 7, x, y ∈ "R"`, find the differential dv
Choose the correct alternative:
If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to