मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

For the following functions find the fx, and fy and show that fxy = fyx f(x, y) = tan-1(xy) - Mathematics

Advertisements
Advertisements

प्रश्न

For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `tan^-1 (x/y)`

बेरीज

उत्तर

`(del"f")/(delx) = 1/(1 + x^2/y^2) (1/y) = y/(x^2 + y^2)`

`(del"f")/(dely) = 1/(1 + x^2/y^2) ((-x)/y^2) = (-x)/(x^2 + y^2)`

`(del^2"f")/(delxdely) = del/(delx)[(del"f")/(dely)]`

= `del/(delx) [(-x)/(x^2 + y^2)]`

= `((x^2 + y^2)[- 1] - (- x)[2x])/(x^2 + y^2)^2`

= `(x^2 - y^2)/(x^2 + y^2)^2`   ........(1)

`(del^2"f")/(delydelx) = del/(dely) [(del"f")/(delx)]`

= `del/(dely)[y/(x^2 + y^2)]`

= `((x^2 + y^2)[1] - y[2y])/(x^2 + y^2)^2`

= `(x^2 - y^2)/(x^2 + y^2)^2`   ..........(2)

From (1) and (2)

⇒ `(del^2"f")/(delxdely) = (del^2"f")/(delydelx)`

shaalaa.com
Partial Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differentials and Partial Derivatives - Exercise 8.4 [पृष्ठ ७९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 2. (ii) | पृष्ठ ७९

संबंधित प्रश्‍न

If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.


Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`


Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`


Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.


If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:


Find the partial dervatives of the following functions at indicated points.

f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)


Find the partial derivatives of the following functions at the indicated points.

`"G"(x, y) = "e"^(x + 3y)  log(x^2 + y^2), (- 1, 1)`


If U(x, y, z) = `log(x^3 + y^3 + z^3)`,  find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = xey + 3x2y


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = log(5x + 3y)


Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0


If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`


If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`


A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results


If v(x, y) = `x^2 - xy + 1/4  y^2 + 7, x, y ∈ "R"`, find the differential dv


Choose the correct alternative:

If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×