मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the partial derivatives of the following functions at the indicated points. GeG(x,y)=ex+3y log(x2+y2),(-1,1) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the partial derivatives of the following functions at the indicated points.

`"G"(x, y) = "e"^(x + 3y)  log(x^2 + y^2), (- 1, 1)`

बेरीज

उत्तर

`(del"G")/(delx) = "e"^(x + 3y) [(2x)/(x^2 + y^2)] + log (x^2 + y^2) ["e"^(x + 3y)]`

= `"e"^(x + 3y) [(2x)/(x^2 + y^2) + log(x^2 + y^2)]`

`(del"G")/(dely) = "e"^(x + 3y) [(2x)/(x^2 + y^2)] + log (x^2 + y^2) [3"e"^(x + 3y)]`

`(del"G")/(dely) = "e"^(x + 3y) [(2y)/(x^2 + y^2) + 3log(x^2 + y^2)]`

At (– 1, 1)

`(del"G")/(delx) = "e"^(-1 + 3) [(-2)/(1 + 1) + log(1 + 1)]`

= `"e"^2[-1 + log2]`

= `"e"^2 [log2 - 1]`

`(del"G")/(dely) = "e"^(-1 + 3) [2/(1 + 1) + 3log(1 + 1)]`

= `"e"^2[1 + 3 log2]`

= `"e"^2[1 + log 8]`

shaalaa.com
Partial Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differentials and Partial Derivatives - Exercise 8.4 [पृष्ठ ७९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 1. (iv) | पृष्ठ ७९

संबंधित प्रश्‍न

If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).


Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.


If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:


If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:


If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:


Find the partial derivatives of the following functions at indicated points.

 h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`


If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`


If U(x, y, z) = `log(x^3 + y^3 + z^3)`,  find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = xey + 3x2y


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = log(5x + 3y)


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = x2 + 3xy – 7y + cos(5x)


If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0


A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C (x, y) = 8x + 6y + 2000 respectively. Find the profit function P(x, y)


A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results


If v(x, y) = `x^2 - xy + 1/4  y^2 + 7, x, y ∈ "R"`, find the differential dv


Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV


Choose the correct alternative:

If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×