मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

If U(x, y, z) = x2+y2xy+3z2y, find UU∂U∂x,∂U∂y and U∂U∂z - Mathematics

Advertisements
Advertisements

प्रश्न

If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`

बेरीज

उत्तर

U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`

`(del"U")/(delx) = ((xy)(2x) - (x^2 + y^2)(y))/(xy)^2` + 0

= `(2x^2y - x^2y - y^3)/(xy)^2`

= `(x^2y - y^3)/(xy)^2`

= `(y(x^2 - y^2))/(x^2y^2)`

= `(x^2 - y^2)/(x^2y)`

`(del"U")/(dely) = ((xy)(2y) - (x^2 + y^2)(x))/(xy)^2 + 3z^2`

= `(2xy^2 - x^3 - y^2x)/(xy)^2 + 3z^2`

= `(xy^2 - x^3)/(xy)^2 + 3z^2`

= `(x(y^2 - x^2))/(x^2y^2)`

= `(y^2 - x^2)/(y^2x) + 3z^2`

`(del"U")/(delz)` = 0 + 6zy = 6zy

shaalaa.com
Partial Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differentials and Partial Derivatives - Exercise 8.4 [पृष्ठ ७९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 3 | पृष्ठ ७९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×