मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1) - Mathematics

Advertisements
Advertisements

प्रश्न

Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)

बेरीज

उत्तर

z(x, y) = x2y + 3xy4 at (2, –1)

Here `(x_0, y_0)` = (2, –1)

`(delz)/(delx) = 2xy + 3y^4`

`(delz)/(dely) = x^2 + 12xy^3`

At (2, –1)

z = `(2)^2(- 1) + 3(2) (- 1)^4`

= `- 4 + 6`

= 2

`(delz)/(delx) = 2(2)(- 1) + 3(- 1)^4`

= `- 4 + 3`

= –1

`(delz)/(dely) = (2)^2  12(2)(- 1)^3`

= `4 - 24`

= – 20

Linear approximation is given by

L(x, y) = `z(x_0 + y_0) + ((delz)/(delx))_(((x_0, y_0))) (x - x_0) + ((delz)/(dely))_(((x_0, y_0)))  (y - y_0)`

= `2 + (- 1)(x - 2) - 20(y + 1)`

= `2 - x + 2 - 20y - 20`

= ` x - 20y  16`

= `- (x + 20y + 16)`

shaalaa.com
Partial Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differentials and Partial Derivatives - Exercise 8.5 [पृष्ठ ८१]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 8 Differentials and Partial Derivatives
Exercise 8.5 | Q 2 | पृष्ठ ८१

संबंधित प्रश्‍न

If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.


Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.


Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`


If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:


Find the partial dervatives of the following functions at indicated points.

f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)


Find the partial dervatives of the following functions at indicated points.

g(x, y) = 3x2 + y2 + 5x + 2, (2, – 5)


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `(3x)/(y + sinx)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `cos(x^2 - 3xy)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = xey + 3x2y


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = log(5x + 3y)


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = x2 + 3xy – 7y + cos(5x)


If w(x, y) = xy + sin(xy), then Prove that `(del^2w)/(delydelx) = (del^2w)/(delxdely)`


If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`


A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C (x, y) = 8x + 6y + 2000 respectively. Find the profit function P(x, y)


Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV


Choose the correct alternative:

If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×