मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the partial dervatives of the following functions at indicated points. f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the partial dervatives of the following functions at indicated points.

f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)

बेरीज

उत्तर

f(x, y) = 3x2 – 2xy + y2 + 5x + 2

`(delf)/(delx)` = 6x – 2y + 5

`(delf)/(dely)` = – 2x + 2y

At (2, – 5)

⇒ `(delf)/(delx)` = 6(2) – 2(– 5) + 5

= 27

`(delf)/(delx)` = – 2(2) + 2(– 5)

= – 14

shaalaa.com
Partial Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differentials and Partial Derivatives - Exercise 8.4 [पृष्ठ ७९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 1. (i) | पृष्ठ ७९

संबंधित प्रश्‍न

If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).


Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.


Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`


If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:


If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:


Find the partial derivatives of the following functions at indicated points.

 h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`


Find the partial derivatives of the following functions at the indicated points.

`"G"(x, y) = "e"^(x + 3y)  log(x^2 + y^2), (- 1, 1)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `tan^-1 (x/y)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `cos(x^2 - 3xy)`


If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`


If U(x, y, z) = `log(x^3 + y^3 + z^3)`,  find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = xey + 3x2y


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = log(5x + 3y)


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = x2 + 3xy – 7y + cos(5x)


A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results


Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)


Choose the correct alternative:

If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t then `"dg"/"dt"` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×