Advertisements
Advertisements
प्रश्न
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = log(5x + 3y)
उत्तर
gx = `(del"g")/(delx) = 1/(5x + 3y) (5) = 5/(5x + 3y)`
gy = `(del"g")/(dely) = 1/(5x + 3y) (3) = 3/(5x + 3y)`
gxx = `(del^2"g")/(delx^2)`
= `del/(delx) [(delg)/(delx)]`
= `del/(delx) [5/(5x + 3y)]`
= `((5x + 3y)(0) - 5(5))/(5x + 3y)^2`
= `(- 25)/(5x + 3y)^2`
gyy = `(del^2"g")/(dely^2)`
= `del/(dely) [(del"g")/(dely)]`
= `del/(dely) [3/(5x + 3y)]`
= `((5x + 3y)(0) - 3(3))/(5x + 3y)^2`
= `(- 9)/(5x + 3y)^2`
gxy = `(del^2"g")/(delxdely)`
= `del/(delx) [(del"g")/(dely)]`
= `del/(delx) [3/(5x + 3y)]`
= `(- 3)/(5x + 3y)^2 (5)`
= `(- 15)/(5x + 3y)^2`
gyx = `(del^2"g")/(delydelx)`
= `del/(dely) [(del"g")/(delx)]`
= `del/(dely) [5/(5x + 3y)]`
= `(- 5)/(5x + 3y)^2 (3)`
= `(- 15)/(5x + 3y)^2`
APPEARS IN
संबंधित प्रश्न
If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.
If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).
Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`
Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`
Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
Find the partial dervatives of the following functions at indicated points.
f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)
Find the partial derivatives of the following functions at indicated points.
h(x, y, z) = x sin (xy) + z2x, `(2, pi/4, 1)`
Find the partial derivatives of the following functions at the indicated points.
`"G"(x, y) = "e"^(x + 3y) log(x^2 + y^2), (- 1, 1)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `tan^-1 (x/y)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `cos(x^2 - 3xy)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = xey + 3x2y
If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C (x, y) = 8x + 6y + 2000 respectively. Find the profit function P(x, y)
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results
Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)
If v(x, y) = `x^2 - xy + 1/4 y^2 + 7, x, y ∈ "R"`, find the differential dv