Advertisements
Advertisements
प्रश्न
Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.
उत्तर
Given u = `log (x^4 - y^4)/(x - y)`
Taking exponential both sides,
`e^"u" = ((x^4 - y^4)/(x - y)) ....[because e^(log x) = x]`
Let f = `"e"^"u" = (x^4 - y^4)/(x - y)`
∴ f(tx, ty) = `(("t"x)^4 - ("t"y)^4)/(tx - ty)`
`= ("t"^4 (x^4 - y^4))/("t" (x - y))`
`= "t"^3 ((x^4 - y^4)/(x - y))`
= t3f (x, y)
∴ f is a homogeneous function of degree 3.
By Euler’s theorem,
`x (del"f")/(del"x") + y(del"f")/(del"y")` = nf
`=> x * (del"f")/(del"x") + y * (del"f")/(del"y")` = 3f
`=> x * (del)/(delx) (e^"u") + y * (del)/(del "y") (e^"u") = 3 * "e"^"u" ...[because "f" = e^"u']`
`=> x * e^"u" (del^"u")/(del x) + y * e^"u" (del "u")/(del "y") = 3e^"u"`
Dividing throughout by eu, we get
`x (del "u")/(del x) + "y" (del "u")/(del "y")` = 3
Hence proved.
APPEARS IN
संबंधित प्रश्न
Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
Find the partial dervatives of the following functions at indicated points.
f(x, y) = 3x2 – 2xy + y2 + 5x + 2, (2, – 5)
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `(3x)/(y + sinx)`
If U(x, y, z) = `log(x^3 + y^3 + z^3)`, find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`
Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0
If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results
If v(x, y) = `x^2 - xy + 1/4 y^2 + 7, x, y ∈ "R"`, find the differential dv
Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV