Advertisements
Advertisements
Question
If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`
Solution
U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`
`(del"U")/(delx) = ((xy)(2x) - (x^2 + y^2)(y))/(xy)^2` + 0
= `(2x^2y - x^2y - y^3)/(xy)^2`
= `(x^2y - y^3)/(xy)^2`
= `(y(x^2 - y^2))/(x^2y^2)`
= `(x^2 - y^2)/(x^2y)`
`(del"U")/(dely) = ((xy)(2y) - (x^2 + y^2)(x))/(xy)^2 + 3z^2`
= `(2xy^2 - x^3 - y^2x)/(xy)^2 + 3z^2`
= `(xy^2 - x^3)/(xy)^2 + 3z^2`
= `(x(y^2 - x^2))/(x^2y^2)`
= `(y^2 - x^2)/(y^2x) + 3z^2`
`(del"U")/(delz)` = 0 + 6zy = 6zy
APPEARS IN
RELATED QUESTIONS
If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).
Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`
Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.
Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`
If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:
If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:
If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:
If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:
Find the partial derivatives of the following functions at the indicated points.
`"G"(x, y) = "e"^(x + 3y) log(x^2 + y^2), (- 1, 1)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `(3x)/(y + sinx)`
For the following functions find the fx, and fy and show that fxy = fyx
f(x, y) = `tan^-1 (x/y)`
For the following functions find the gxy, gxx, gyy and gyx
g(x, y) = x2 + 3xy – 7y + cos(5x)
If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0
A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results
Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)