English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

If U(x, y, z) = x2+y2xy+3z2y, find UU∂U∂x,∂U∂y and U∂U∂z - Mathematics

Advertisements
Advertisements

Question

If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`

Sum

Solution

U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`

`(del"U")/(delx) = ((xy)(2x) - (x^2 + y^2)(y))/(xy)^2` + 0

= `(2x^2y - x^2y - y^3)/(xy)^2`

= `(x^2y - y^3)/(xy)^2`

= `(y(x^2 - y^2))/(x^2y^2)`

= `(x^2 - y^2)/(x^2y)`

`(del"U")/(dely) = ((xy)(2y) - (x^2 + y^2)(x))/(xy)^2 + 3z^2`

= `(2xy^2 - x^3 - y^2x)/(xy)^2 + 3z^2`

= `(xy^2 - x^3)/(xy)^2 + 3z^2`

= `(x(y^2 - x^2))/(x^2y^2)`

= `(y^2 - x^2)/(y^2x) + 3z^2`

`(del"U")/(delz)` = 0 + 6zy = 6zy

shaalaa.com
Partial Derivatives
  Is there an error in this question or solution?
Chapter 8: Differentials and Partial Derivatives - Exercise 8.4 [Page 79]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 3 | Page 79

RELATED QUESTIONS

If u = exy, then show that `(del^2"u")/(delx^2) + (del^2"u")/(del"y"^2)` = u(x2 + y2).


Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`


Verify Euler’s theorem for the function u = x3 + y3 + 3xy2.


Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`


If u = 4x2 + 4xy + y2 + 4x + 32y + 16, then `(del^2"u")/(del"y" del"x")` is equal to:


If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:


If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:


If q = 1000 + 8p1 – p2 then, `(del"q")/(del "p"_1)`is:


Find the partial derivatives of the following functions at the indicated points.

`"G"(x, y) = "e"^(x + 3y)  log(x^2 + y^2), (- 1, 1)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `(3x)/(y + sinx)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `tan^-1 (x/y)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = x2 + 3xy – 7y + cos(5x)


If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0


A from produces two types of calculates each week, x number of type A and y number of type B. The weekly revenue and cost functions = (in rupees) are R(x, y) = 80x + 90y + 0.04xy – 0.05x2 – 0.05y2 and C(x, y) = 8x + 6y + 2000 respectively. Find `(del"P")/(delx)` (1200, 1800) and `(del"P")/(dely)` (1200, 1800) and interpret these results


Let z(x, y) = x2y + 3xy4, x, y ∈ R, Find the linear approximation for z at (2, –1)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×