हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Let w(x, y, z) = 1x2+y2+z2 = 1, (x, y, z) ≠ (0, 0, 0), show that ∂2w∂x2+∂2w∂y2+∂2w∂z2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Let w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)` = 1, (x, y, z) ≠ (0, 0, 0), show that `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0

योग

उत्तर

w(x, y, z) = `1/sqrt(x^2 + y^2 + z^2)`

`(delw)/(delx) = (- 1/2(2x))/(x^2 + y^2 + z^2)^(3/2)`

= `(-x)/(x^2 + y^2 + z^2)^(3/2)`

= `(delw)/(dely) = (- y)/(x^2 + y^2 + z^2)^(3/2)`

`(del^2w)/(delx^2) = ((x^2 + y^2 + z^2)^(3/2) (- 1) + x 3/2 (x^2 + y^2 + z^2)^(1/*2) (2x))/[(x^2 + y^2 + z^2)^(3/2)]^2`

= `((x^2 + y^2 + z^2)^(1/2) [- x^2  y^2 - z^2 + 3x^2])/(x^2 + y^2 + z^2)^2`

= `(2x^2 - y^2 - z^2)/(x^2 + y^2 + z^2)^(5/2)`  ......(1)

`(del^2w)/(dely^2) = (-x^2 + 2y^2 - z^2)/(x^2 + y^2 + z^2)^(5/2)`   ........(2)

`(del^2w)/(delz^2) = (-x^2 - y^2 + 2z^2)/(x^2 + y^2 + z^2)^(5/2)`   ........(3)

(1) + (2) + (3)

⇒ `(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2) = 0/(x^2 + y^2 + z^2)^(5/2)`

`(del^2w)/(delx^2) + (del^2w)/(dely^2) + (del^2w)/(delz^2)` = 0

shaalaa.com
Partial Derivatives
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differentials and Partial Derivatives - Exercise 8.4 [पृष्ठ ७९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 8 Differentials and Partial Derivatives
Exercise 8.4 | Q 6 | पृष्ठ ७९

संबंधित प्रश्न

If z = (ax + b) (cy + d), then find `(∂z)/(∂x)` and `(∂z)/(∂y)`.


Let u = x cos y + y cos x. Verify `(del^2"u")/(delxdely) = (del^"u")/(del"y"del"x")`


Let u = x2y3 cos`(x/y)`. By using Euler’s theorem show that `x*(del"u")/(delx) + y * (del"u")/(dely)`


Let u = `log (x^4 - y^4)/(x - y).` Using Euler’s theorem show that `x (del"u")/(del"x") + y(del"u")/(del"y")` = 3.


If u = x3 + 3xy2 + y3 then `(del^2"u")/(del "y" del x)`is:


If u = `e^(x^2)` then `(del"u")/(delx)` is equal to:


Find the partial dervatives of the following functions at indicated points.

g(x, y) = 3x2 + y2 + 5x + 2, (2, – 5)


Find the partial derivatives of the following functions at the indicated points.

`"G"(x, y) = "e"^(x + 3y)  log(x^2 + y^2), (- 1, 1)`


For the following functions find the fx, and fy and show that fxy = fyx 

f(x, y) = `cos(x^2 - 3xy)`


If U(x, y, z) = `(x^2 + y^2)/(xy) + 3z^2y`, find `(del"U")/(delx), (del"U")/(dely)` and `(del"U")/(del"z)`


If U(x, y, z) = `log(x^3 + y^3 + z^3)`,  find `(del"U")/(delx) + (del"U")/(dely) + (del"U")/(del"z)`


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = xey + 3x2y


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = log(5x + 3y)


For the following functions find the gxy, gxx, gyy and gyx 

g(x, y) = x2 + 3xy – 7y + cos(5x)


If V(x, y) = ex (x cosy – y siny), then Prove that `(del^2"V")/(delx^2) + (del^2"V")/(dely^2)` = 0


If v(x, y, z) = x3 + y3 + z3 + 3xyz, Show that `(del^2"v")/(delydelz) = (del^2"v")/(delzdely)`


Let V (x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×