Advertisements
Advertisements
Question
Let U(x, y, z) = xyz, x = e–t, y = e–t cos t, z – sin t, t ∈ R, find `"dU"/"dt"`
Solution
U(x, y, z) = xyz, x = e–t, y = e–t cos t
`"dU"/("d"x) = yz = "e"^-"t" cos"t" sin"t", ("d"x)/"dt" = - "e"^-"t"`
`"dU"/("d"y) = xz = "e"^-"t" sin"t", ("d"y)/"dt" = - "e"^-"t" cos"t" - "e"^-"t" sin"t"`
`"dU"/("d"z) = xy = "e"^-"t" "e"^-"t" cos"t", ("d"z)/"dt" = cos"t"`
`"dU"/"dt"` = – (e–t cos t sin t) e–t + e–t sin t [e–t (cos t – sin t )] + e–2t cos t (cos t)
= – e–2t cos t sin t – e–2t sin t cos t – e–2t sin²t + e–2t cos²t
= – e–2t (2 sin t cos t + sin2t – cos2t)
= – e–2t [sin 2t – (cos2t – sin2t)]
= – e–2t (sin 2t + cos 2t)
APPEARS IN
RELATED QUESTIONS
If w(x, y) = x3 – 3xy + 2y2, x, y ∈ R, find the linear approximation for w at (1, –1)
Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`
If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`
Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find `("d"w)/"ds"` and evaluate at s = 0
Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find `(del"U")/(del"s"), (del"u")/(del"t")` and evaluate them at s = t = 1
Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(delt)`
W(x, y, z) = xy + yz + zx, x = u – v, y = uv, z = u + v, u, v ∈ R. Find `(del"W")/(del"u"), (del"W")/(del"v")` and evaluate them at `(1/2, 1)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`
Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f
If `"u"(x , y) = (x^2 + y^2)/sqrt(x + y)`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 3/2 "u"`
If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`
Choose the correct alternative:
If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to
Choose the correct alternative:
If f(x, y, z) = xy + yz + zx, then fx – fz is equal to