English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find ddsdwds and evaluate at s = 0 - Mathematics

Advertisements
Advertisements

Question

Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find `("d"w)/"ds"` and evaluate at s = 0

Sum

Solution

w(x, y) = 6x3 – 3xy + 2y2

`("d"w)/"ds" = ("d"w)/("d"x) ("d"x)/"ds" + ("d"w)/("d"y) ("d"y)/"ds"`

`("d"w)/("d"x) = 18x^2 - 3y, ("d"x)/"ds" = "e"^"s"`

`("d"w)/("d"y) = - 3x + 4y, ("d"y)/"ds" = - sin "s"`

`("d"w)/"ds" = (18"e"^(2"s") - 3 cos "s")"e"^"s" + (- 3"e"^(2"s") + 4cos "s")(- sin "s")`

`("d"w)/"ds" = 18"e"^(3"s") - 3"e"^"s" cos "s" + 3"e"^"s" sin "s" - 4 cos "s" sin "s"`

At s = 0,

`("d"w)/"ds" = 18"e"^circ - "e"^circ cos 0 + "e"^circ sin 0 - 4 cos 0 sin 0`

= 18 – 3 + 0 + 0

`("d"w)/"ds"` = 15

shaalaa.com
Linear Approximation and Differential of a Function of Several Variables
  Is there an error in this question or solution?
Chapter 8: Differentials and Partial Derivatives - Exercise 8.6 [Page 84]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 8 Differentials and Partial Derivatives
Exercise 8.6 | Q 5 | Page 84

RELATED QUESTIONS

If w(x, y) = x3 – 3xy + 2y2, x, y ∈ R, find the linear approximation for w at (1, –1)


If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`


Let U(x, y, z) = xyz, x = e–t, y = et cos t, z – sin t, t ∈ R, find `"dU"/"dt"`


Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

f(x, y) = x2y + 6x3 + 7


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

U(x, y, z) = `xy + sin((y^2 - 2z^2)/(xy))`


Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f


Prove that g(x, y) = `x log(y/x)` is homogeneous What is the degree? Verify Eulers Theorem for g


If `"u"(x , y) = (x^2 + y^2)/sqrt(x + y)`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 3/2 "u"`


If v(x, y) = `log((x^2 + y^2)/(x + y))`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 1`


If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`


Choose the correct alternative:

If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to


Choose the correct alternative:

f u(x, y) = x2 + 3xy + y – 2019, then `(delu)/(delx) "|"_(((4 , - 5)))` is equal to


Choose the correct alternative:

If f(x, y, z) = xy + yz + zx, then fx – fz is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×