मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find ddsdwds and evaluate at s = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find `("d"w)/"ds"` and evaluate at s = 0

बेरीज

उत्तर

w(x, y) = 6x3 – 3xy + 2y2

`("d"w)/"ds" = ("d"w)/("d"x) ("d"x)/"ds" + ("d"w)/("d"y) ("d"y)/"ds"`

`("d"w)/("d"x) = 18x^2 - 3y, ("d"x)/"ds" = "e"^"s"`

`("d"w)/("d"y) = - 3x + 4y, ("d"y)/"ds" = - sin "s"`

`("d"w)/"ds" = (18"e"^(2"s") - 3 cos "s")"e"^"s" + (- 3"e"^(2"s") + 4cos "s")(- sin "s")`

`("d"w)/"ds" = 18"e"^(3"s") - 3"e"^"s" cos "s" + 3"e"^"s" sin "s" - 4 cos "s" sin "s"`

At s = 0,

`("d"w)/"ds" = 18"e"^circ - "e"^circ cos 0 + "e"^circ sin 0 - 4 cos 0 sin 0`

= 18 – 3 + 0 + 0

`("d"w)/"ds"` = 15

shaalaa.com
Linear Approximation and Differential of a Function of Several Variables
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differentials and Partial Derivatives - Exercise 8.6 [पृष्ठ ८४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 8 Differentials and Partial Derivatives
Exercise 8.6 | Q 5 | पृष्ठ ८४

संबंधित प्रश्‍न

If u(x, y) = x2y + 3xy4, x = et and y = sin t, find `"du"/"dt"` and evaluate if at t = 0


Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`


Let U(x, y, z) = xyz, x = e–t, y = et cos t, z – sin t, t ∈ R, find `"dU"/"dt"`


Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1


Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(delt)`


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)` 


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`


Prove that g(x, y) = `x log(y/x)` is homogeneous What is the degree? Verify Eulers Theorem for g


If `"u"(x , y) = (x^2 + y^2)/sqrt(x + y)`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 3/2 "u"`


If v(x, y) = `log((x^2 + y^2)/(x + y))`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 1`


If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`


Choose the correct alternative:

If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to


Choose the correct alternative:

If w(x, y) = xy, x > 0, then `(del"w")/(delx)` is equal to


Choose the correct alternative:

f u(x, y) = x2 + 3xy + y – 2019, then `(delu)/(delx) "|"_(((4 , - 5)))` is equal to


Choose the correct alternative:

If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is 


Choose the correct alternative:

If f(x, y, z) = xy + yz + zx, then fx – fz is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×