Advertisements
Advertisements
प्रश्न
If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`
उत्तर
w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`
Convert into exponential function
ew = `((5x^3y^4 + 7y^2xz^4 75y^3z^4)/(x^2 + y^2))` = f(x, y)
`"f"(lambdax, lambday) = (5lambda^3x^3lambda^4y^4 + 7lambda^2y^lambdaxlambda^4z^4 - 75lambda^3y^3lambda^4z^4)/(lambda^2x^2 + lambda^2y^2)`
= `(lambda^7(5x^3y^4 + 7y^2xz^4 - 75y^3y^4))/(lambda^2(x^2 + y^2))`
f is a homogeneous function of degree 5
By Euler's Theorem,
`x (del"f")/(delx) + y (del"f")/(dely) + z (del"f")/(delz)` = 5f
`x del/(delx) + "e"^"w" + y del/(dely) "e"^"w" + z del/(delz) "e"^"w"` = 5ew
`"e"^"w" x (del"w")/(delx) + "e"^"w" y (del"w")/(dely) + "e"^"w" z (del"w")/(delz)` = 5ew
Divided by ew
`x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz) = (5"e"^"w")/"e"^"w"`
`x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)` = 5
APPEARS IN
संबंधित प्रश्न
If w(x, y) = x3 – 3xy + 2y2, x, y ∈ R, find the linear approximation for w at (1, –1)
If u(x, y) = x2y + 3xy4, x = et and y = sin t, find `"du"/"dt"` and evaluate if at t = 0
Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`
If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`
Let U(x, y, z) = xyz, x = e–t, y = e–t cos t, z – sin t, t ∈ R, find `"dU"/"dt"`
Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find `("d"w)/"ds"` and evaluate at s = 0
Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find `(del"U")/(del"s"), (del"u")/(del"t")` and evaluate them at s = t = 1
Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(delt)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`
Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f
If v(x, y) = `log((x^2 + y^2)/(x + y))`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 1`
Choose the correct alternative:
If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to
Choose the correct alternative:
If w(x, y) = xy, x > 0, then `(del"w")/(delx)` is equal to
Choose the correct alternative:
f u(x, y) = x2 + 3xy + y – 2019, then `(delu)/(delx) "|"_(((4 , - 5)))` is equal to
Choose the correct alternative:
If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is
Choose the correct alternative:
If f(x, y, z) = xy + yz + zx, then fx – fz is equal to