Advertisements
Advertisements
प्रश्न
Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find `(del"U")/(del"s"), (del"u")/(del"t")` and evaluate them at s = t = 1
उत्तर
U(x, y) = ex sin y where x = st2, y = s2t
`(del"U")/(del"s") = (del"U")/(delx) (delx)/(del"s") + (del"U")/(dely) (dely)/(del"s")`
`(del"U")/(delx) = "e"^x siny, (delx)/(del"t") = 2"st", (delx)/(del"s") = "t"^2`
`(del"U")/(dely) = "e"^x cosy, (dely)/(del"t") = "s"^2, (dely)/(del"s") = 2"st"`
`(del"U")/(del"s") = "e"^x siny "t"^2 + "e"^x cosy (2"st")`
= est2 sin (s2t) t2 + est2 cos(s2t) 2st
= est2 [t2 sin (s2t) + 2st cos (s2t)]
= t ex [t sin(s2t) + 2s cos (s2t)]
`(del"U")/(del"t")` = ex sin y 2st + ex cos y (s2)
= est2 sin(s2t) 2st + est2 cos(s2t) s2
= s est2 [2t sin (s2t) + s cos(s2t)]
At s = t = 1
`(del"U")/(del"s")` e[sin(1) + 2 cos (1)]
= e[sin(1) + 2 cos (1)]
`(del"U")/(del"t")` = e[2 sin(1) + cos (1)]
APPEARS IN
संबंधित प्रश्न
If w(x, y) = x3 – 3xy + 2y2, x, y ∈ R, find the linear approximation for w at (1, –1)
If u(x, y) = x2y + 3xy4, x = et and y = sin t, find `"du"/"dt"` and evaluate if at t = 0
Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`
If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`
Let U(x, y, z) = xyz, x = e–t, y = e–t cos t, z – sin t, t ∈ R, find `"dU"/"dt"`
Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1
W(x, y, z) = xy + yz + zx, x = u – v, y = uv, z = u + v, u, v ∈ R. Find `(del"W")/(del"u"), (del"W")/(del"v")` and evaluate them at `(1/2, 1)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
f(x, y) = x2y + 6x3 + 7
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`
Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f
If `"u"(x , y) = (x^2 + y^2)/sqrt(x + y)`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 3/2 "u"`
If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`
Choose the correct alternative:
If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to
Choose the correct alternative:
If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to
Choose the correct alternative:
f u(x, y) = x2 + 3xy + y – 2019, then `(delu)/(delx) "|"_(((4 , - 5)))` is equal to
Choose the correct alternative:
If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is
Choose the correct alternative:
If f(x, y, z) = xy + yz + zx, then fx – fz is equal to