Advertisements
Advertisements
Question
Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find `(del"U")/(del"s"), (del"u")/(del"t")` and evaluate them at s = t = 1
Solution
U(x, y) = ex sin y where x = st2, y = s2t
`(del"U")/(del"s") = (del"U")/(delx) (delx)/(del"s") + (del"U")/(dely) (dely)/(del"s")`
`(del"U")/(delx) = "e"^x siny, (delx)/(del"t") = 2"st", (delx)/(del"s") = "t"^2`
`(del"U")/(dely) = "e"^x cosy, (dely)/(del"t") = "s"^2, (dely)/(del"s") = 2"st"`
`(del"U")/(del"s") = "e"^x siny "t"^2 + "e"^x cosy (2"st")`
= est2 sin (s2t) t2 + est2 cos(s2t) 2st
= est2 [t2 sin (s2t) + 2st cos (s2t)]
= t ex [t sin(s2t) + 2s cos (s2t)]
`(del"U")/(del"t")` = ex sin y 2st + ex cos y (s2)
= est2 sin(s2t) 2st + est2 cos(s2t) s2
= s est2 [2t sin (s2t) + s cos(s2t)]
At s = t = 1
`(del"U")/(del"s")` e[sin(1) + 2 cos (1)]
= e[sin(1) + 2 cos (1)]
`(del"U")/(del"t")` = e[2 sin(1) + cos (1)]
APPEARS IN
RELATED QUESTIONS
If w(x, y) = x3 – 3xy + 2y2, x, y ∈ R, find the linear approximation for w at (1, –1)
Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`
If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`
Let U(x, y, z) = xyz, x = e–t, y = e–t cos t, z – sin t, t ∈ R, find `"dU"/"dt"`
Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find `("d"w)/"ds"` and evaluate at s = 0
Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1
Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(delt)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
U(x, y, z) = `xy + sin((y^2 - 2z^2)/(xy))`
Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f
Prove that g(x, y) = `x log(y/x)` is homogeneous What is the degree? Verify Eulers Theorem for g
If `"u"(x , y) = (x^2 + y^2)/sqrt(x + y)`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 3/2 "u"`
If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`
Choose the correct alternative:
If w(x, y) = xy, x > 0, then `(del"w")/(delx)` is equal to
Choose the correct alternative:
f u(x, y) = x2 + 3xy + y – 2019, then `(delu)/(delx) "|"_(((4 , - 5)))` is equal to