Advertisements
Advertisements
Question
Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1
Solution
`(delz)/(del"z") = x 1/(1 + (xy)^2) xx y + tan^-1 (xy)`
`(xy)/(1 + x^2y^2) + tan^-1 (xy)`
`(delz)/(dely) = x 1/(1 + (xy)^2) xx x`
= `x^2/(1 + x^2y^2)`
`(delx)/(dely) = 0, (dely)/(del"s") = "e"^"t", (delx)/(del"t") = 2"t", (dely)/(del"t") = "s" "e"^"t"`
`(delz)/(del"s") = (delz)/(del"s") + (delz)/(dely) (dely)/(del"s")`
`(delz)/(del"s") = ([(xy)/( + x^2y^2)] + tan^-1 (xy)) xx 0 + x^2/(1 + x^2y^2) xx "e"^"t"`
= `"t"^4/(1 + "t"^2"s"^2"e"^(2"t")) "e"^"t" = ("e"^"t" "t"^4)/(1 + "t"^2"s"^2"e"^(2"t"))`
`(delz)/(del"t") = (delz)/(del"x") (delx)/(delt) + (delz)/(del"y") (dely)/(del"t")`
= `[(xy)/(1 + (xy)^2) + tan^-1(xy)] xx 2"t" + [x^2/(1 + (xy)^2)] xx "se"^"t"`
= `[("t"^2"se"^"t")/(1 + "t"^2"s"^2"e"^(2"t")) + tan^-1("t"^2"se"^"t")] xx 2"t" + ["t"^4/(1 + "t"^2"s"^2"e"^(2"t"))]"se"^"t"`
As s = t = 1,
`(delz)/(del"s") = "e"/(1 + "e"^2)`
`(delz)/(del"t") = (3"e")/(1 + "e"^2) + 2tan^-1("e")`
APPEARS IN
RELATED QUESTIONS
If u(x, y) = x2y + 3xy4, x = et and y = sin t, find `"du"/"dt"` and evaluate if at t = 0
Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`
If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`
Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(delt)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
f(x, y) = x2y + 6x3 + 7
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`
Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f
Prove that g(x, y) = `x log(y/x)` is homogeneous What is the degree? Verify Eulers Theorem for g
If v(x, y) = `log((x^2 + y^2)/(x + y))`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 1`
If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`
Choose the correct alternative:
If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to
Choose the correct alternative:
If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to
Choose the correct alternative:
If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is
Choose the correct alternative:
If f(x, y, z) = xy + yz + zx, then fx – fz is equal to